1,435 research outputs found

    Modeling Flocks and Prices: Jumping Particles with an Attractive Interaction

    Get PDF
    We introduce and investigate a new model of a finite number of particles jumping forward on the real line. The jump lengths are independent of everything, but the jump rate of each particle depends on the relative position of the particle compared to the center of mass of the system. The rates are higher for those left behind, and lower for those ahead of the center of mass, providing an attractive interaction keeping the particles together. We prove that in the fluid limit, as the number of particles goes to infinity, the evolution of the system is described by a mean field equation that exhibits traveling wave solutions. A connection to extreme value statistics is also provided.Comment: 35 pages, 9 figures. A shortened version appears as arXiv:1108.243

    Comparing the observed properties of the GRBs detected by the Fermi and Swift satellites

    Get PDF
    We studied the distribution of the GRBs, observed by the Fermi satellite, in the multidimensional parameter space consisting of the duration, Fluence, Peak flux and Peak energy (if it was available). About 10% of the Fermi bursts was observed also by the Swift satellite. We did not find significant differences between the Peak flux and Peak energy of GRBs observed and not observed also by the Swift satellite. In contrast, those GRBs detected also by the Swift satellite had significantly greater Fluence and duration. We did a similar study for the GRBs detected by the Swift satellite. About 30% percent of these bursts was also measured by the Fermi satellite. We found a significant difference in the Fluence, Peak flux and Photon index but none in duration. These differences may be accounted for the different construction and observing strategy of the Fermi and Swift satellites.Comment: 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: paper 5 in eConf Proceedings C130414

    Discrete coherent states for higher Landau levels

    Get PDF
    We consider the quantum dynamics of a charged particle evolving under the action of a constant homogeneous magnetic field, with emphasis on the discrete subgroups of the Heisenberg group (in the Euclidean case) and of the SL(2, R) group (in the Hyperbolic case). We investigate completeness properties of discrete coherent states associated with higher order Euclidean and hyperbolic Landau levels, partially extending classic results of Perelomov and of Bargmann, Butera, Girardello and Klauder. In the Euclidean case, our results follow from identifying the completeness problem with known results from the theory of Gabor frames. The results for the hyperbolic setting follow by using a combination of methods from coherent states, time-scale analysis and the theory of Fuchsian groups and their associated automorphic forms.Comment: Revised for Annals of Physic

    Survival analysis of the optical brightness of GRB host galaxies

    Get PDF
    We studied the unbiased optical brightness distribution which was calculated from the survival analysis of host galaxies and its relationship with the Swift GRB data of the host galaxies observed by the Keck telescopes. Based on the sample obtained from merging the Swift GRB table and the Keck optical data we also studied the dependence of this distribution on the data of the GRBs. Finally, we compared the HGs distribution with standard galaxies distribution which is in the DEEP2 galaxies catalog.Comment: Swift: 10 Years of Discovery. Conference paper. 2-5 December 2014. La Sapienza University, Rome, Ital

    Properties of the intermediate type of gamma-ray bursts

    Get PDF
    Gamma-ray bursts can be divided into three groups ("short", "intermediate", "long") with respect to their durations. The third type of gamma-ray bursts - as known - has the intermediate duration. We show that the intermediate group is the softest one. An anticorrelation between the hardness and the duration is found for this subclass in contrast to the short and long groups.Comment: In Sixteenth Maryland Astrophysics Conferenc

    A Principal Component Analysis of the 3B Gamma-Ray Burst Data

    Get PDF
    We have carried out a principal component analysis for 625 gamma-ray bursts in the BATSE 3B catalog for which non-zero values exist for the nine measured variables. This shows that only two out of the three basic quantities of duration, peak flux and fluence are independent, even if this relation is strongly affected by instrumental effects, and these two account for 91.6% of the total information content. The next most important variable is the fluence in the fourth energy channel (at energies above 320 keV). This has a larger variance and is less correlated with the fluences in the remaining three channels than the latter correlate among themselves. Thus a separate consideration of the fourth channel, and increased attention on the related hardness ratio H43H43 appears useful for future studies. The analysis gives the weights for the individual measurements needed to define a single duration, peak flux and fluence. It also shows that, in logarithmic variables, the hardness ratio H32H32 is significantly correlated with peak flux, while H43H43 is significantly anticorrelated with peak flux. The principal component analysis provides a potentially useful tool for estimating the improvement in information content to be achieved by considering alternative variables or performing various corrections on available measurementsComment: Ap.J., accepted 12/9/97; revised version contains a new appendix, somewhat expanded discussion; latex, aaspp4, 15 page
    • …
    corecore