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ABSTRACT
We have carried out a principal component analysis for 625 gamma-ray bursts in the BATSE 3B

catalog for which nonzero values exist for the nine measured variables. This shows that only two out of
the three basic quantities of duration, peak Ñux, and Ñuence are independent, even if this relation is
strongly a†ected by instrumental e†ects, and these two account for 91.6% of the total information
content. The next most important variable is the Ñuence in the fourth energy channel (at energies above
320 keV). This has a larger variance and is less correlated with the Ñuences in the remaining three chan-
nels than the latter correlate among themselves. Thus a separate consideration of the fourth channel and
an increased attention paid to the related hardness ratio H43 appear useful for future studies. The
analysis gives the weights for the individual measurements needed to deÐne a single duration, peak Ñux,
and Ñuence. It also shows that, in logarithmic variables, the hardness ratio H32 is signiÐcantly correlated
with peak Ñux, while H43 is signiÐcantly anticorrelated with peak Ñux. The principal component analysis
provides a potentially useful tool for estimating the improvement in information content to be achieved
by considering alternative variables or for performing various corrections on available measurements.
Subject heading : gamma rays : bursts È methods : data analysis È methods : statistical

1. INTRODUCTION

Extensive databases on gamma-ray burst (GRB) proper-
ties such as the BATSE 3B catalog et al.(Meegan 1996)
contain a wealth of statistical information. However, to
translate that into useful knowledge about the physics of
GRBs requires a signiÐcant amount of interpretational
e†ort. In its simplest form, the 3B archive, and foreseeably
also its later updates, contain nine entries per event, includ-
ing several di†erent deÐnitions of three basic physical mea-
surements, duration, Ñuence, and peak Ñux. One of the
principal questions that must be asked is how many of these
entries are truly important. Another question is, which
subset or combination of these nine quantities contains the
maximum amount of nonredundant information. In other
words, what is the number of signiÐcant physical quantities
responsible for the observed variables. Numerous analyses
of the 3B catalog and its predecessors have been made (e.g.,

et al. Graziani, & SmithKouveliotou 1993 ; Lamb, 1993 ;
et al. et al. et al.Mitrofanov 1994 ; Norris 1994 ; Briggs 1995 ;

et al. & Wasserman &Norris 1995 ; Loredo 1995 ; Emslie
Horack using di†erent techniques. These papers have1995),
looked at various statistical properties of the bursts within a
broader context. However, none of them appears to have
investigated the above questions with a method speciÐcally
designed to answer them. In this paper we address these
questions speciÐcally, within the framework of the principal
component analysis (PCA), which is particularly suited for
this task. The PCA is a well-known statistical method (e.g.,

& Heck thatMorrison 1967 ; Jolli†e 1986 ; Murtagh 1987)
has wide applications in engineering, artiÐcial intelligence,
geophysics, biophysics, and also in some areas of astronomy
(e.g., et al. et al. However, toConnolly 1995 ; Bala� zs 1996).
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our knowledge, this method has not so far been used to any
signiÐcant extent in the Ðeld of GRBs (a partial exception is

Feigelson, & Babu We show that theMukherjee, 1997).
PCA can provide useful insights into the statistical proper-
ties of the variables in the 3B catalog that could simplify the
investigation of the physical nature of GRBs.

Broadly speaking, there are three main beneÐts to be
gained from an analysis using the principal components of a
data set. First, without any essential loss of information, it
allows one to reduce the total number n of observed vari-
ables to a lower value m\ n, which can be considered to be
statistically uncorrelated with each other (i.e., one can
obtain a smaller number m of ““ highly signiÐcant ÏÏ
variables). Second, it identiÐes among the remaining (n [ m)
variables a smaller number that may contain some degree of
further information. Finally, it allows one to obtain, in some
sense, information about the character of parameters of the
sources themselves (e.g., et al. et al.Connolly 1995 ; Bala� zs
1996).

The nine entries of the 3B database for each GRB consist
of two durations, and which contain 50% and 90%T50 T90,
of the burst counts, respectively et al.(Kouveliotou 1993 ;

et al. four Ñuences (time-integrated energyKoshut 1996) ;
Ñuxes) F1, F2, F3, F4, deÐned over di†erent energy chan-
nels ; and three measures of the peak Ñux (each summed
over the four energy channels), measured over three di†er-
ent resolution timescales (64, 256, and 1024 ms). Thus the
initial number of variables for the PCA is n \ 9. There is, of
course, some incompleteness in the catalog in that not all
nine quantities are available for all the GRBs in the catalog.
There are several possible ways to deal with this problem in
statistical studies (e.g., p. 219). However, hereJolli†e 1986,
we will not address the incompleteness issue, choosing
instead to use a subset of GRBs for which all nine entries
are nonzero. There are 625 such GRBs in the 3B catalog,
and the PCA is done here on these. In a PCA is done for° 2
the subspace of the four Ñuences only, to address the ques-
tion of their independence and to probe the information
contained in related quantities such as hardness ratios. In

we perform a PCA of the full n \ 9 variables in the° 3
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catalog. In we discuss and summarize the results. In° 4
Appendix A a similar statistical method called factor
analysis is also brieÑy presented, completing the results of
° 3.

2. PRINCIPAL COMPONENT ANALYSIS OF THE

FOUR FLUENCES

A PCA for the Ñuences in four channels is straightfor-
ward, using the method of the correlation matrix described
in A PCA by means of the correlation matrixJolli†e (1986).
is the default option of a number of statistical packages. The
motivation for using correlations instead of covariances is
based on the fact that the observed variables might have
very di†erent scales. The correlation uses variables normal-
ized with standard deviations and mean values, thus over-
coming the scale disparity problem. This is important for
GRBs, which have durations ranging over 6 orders of mag-
nitude. Also, throughout this paper we will deal with the
logarithms of the quantities involved. This leads to a linear
functional dependence between two quantities in the case
when one quantity is proportional to an arbitrary power of
another quantity. This is a reasonable assumption in our
case, since a number of models of GRBs predict a power-
law relationship between the observable quantities (see

For this reason, the use ofNemiro† 1994 ; Paczyn� ski 1995).
logarithms seems to be a justiÐed procedure. (We note,
however, that we have also performed the entire analysis
directly on the quantities themselves, as opposed to on their
logarithms, and the basic conclusions remain unchanged.)
The correlation matrix for the logarithms of the four Ñu-
ences is immediately calculable from the BATSE 3B catalog
and is presented in Table 1.

The correlation matrix is symmetric and is written, as
usual, in a ““ triangle form ÏÏ (see, e.g., p. 34). TheJolli†e 1986,
values in are straightforward : for example, 0.97 inTable 1
the Ðrst row and second column is the correlation coeffi-
cient between the logarithms of the Ñuences in the Ðrst and
second channels, etc. The correlation coefficients are calcu-
lated with the classical PearsonÏs formula et al.(Press 1992),
the diagonal matrix elements being always unity (Jolli†e

The values in indicate that there are1986). Table 1
extremely strong correlations among the Ñuences of the Ðrst
three channels. On the other hand, the fourth channel is
obviously less correlated with the remaining ones, although
the degree of correlation is still signiÐcant. In and inTable 1
the other tables with correlation matrices in this paper, the
symbol ““ ” ÏÏ indicates a º99.9% probability that the two
quantities considered are correlated, while the symbol ““ ¤ ÏÏ
indicates a correlation probability of between 99% and

TABLE 1

CORRELATION MATRIX BETWEEN THE LOGARITHMS

OF THE FLUENCES

Quantity log F1 log F2 log F3 log F4

log F1 . . . . . . 1 0.97” 0.90” 0.62”
log F2 . . . . . . 1 0.94” 0.65”
log F3 . . . . . . 1 0.75”
log F4 . . . . . . 1

NOTE.ÈCorrelation matrix between the logarithms of
the Ñuences in the four channels for 625 GRBs in the 3B
catalog. The ” symbol (usually written as ** in the sta-
tistical literature) indicates that the quantities in that row
and column are correlated with a probability º99.9%.

99.9%. (The probability of the existence of correlation is
calculated using equation [14.5.2] from et al.Press 1992.)

The four variables log Fi constitute a four-dimensional
vector space, and the principal components are, in essence,
the eigenvectors of the correlation matrix in this space, i.e.,
they determine orthogonal directions. Usually, the principal
components are also unit vectors (i.e., the sum of the
squares of the four coefficients is 1), but one can multiply
them with an arbitrary nonzero constant without any loss
of generality. The relative weights of the four variables are
proportional to the coefficients, e.g., if the coefficients are
equal (in four dimensions they are 0.5), then the four vari-
ables are equally important (they have the same weight). To
calculate the principal components (hereafter PCs) one may
use, e.g., the singular-value decomposition algorithm (a
numerical routine is available in et al. or thePress 1992)
iteration method described in The resultsMorrison (1967).
are shown in Table 2.

From (Ðrst row), the Ðrst PC is given by theTable 2
following linear combination of the four basic variables
used here : 0.51 log F1 ] 0.52 log F2 ] 0.52 log F3 ] 0.43
log F4. This Ðrst PC accounts for D86% of the total sta-
tistical information (which is 100 % when the four PCs are
taken into account). One can see that the Ðrst PC is a unit
vector in which the weights of the four log Fi are almost
identical. However, the remaining three principal com-
ponents (the next three rows of are more compli-Table 2)
cated combinations of the four log Fi. For instance, the
second PC accounts for D12% of the total statistical infor-
mation content in this space, and it is given approximately
by [log F1 [ log F2 ] 2 log F4. This second PC is domi-
nated by log F4, owing to the much larger weight given to
it. We also see that, in essence, the relative importance of the
second PC comes from the fact that F4 does not correlate as
strongly with the remaining three Ñuences as do these
among themselves. Another way to look at the second PC is
as a quantity involving hardness ratios related to F4, i.e.,
[log F1 [ log F2 ] 2 log F4 \ log F42/(log F1F2) \ log
H41H42, where Hij\ Fi/Fj (i, j \ 1, 2, 3, 4), which is a
hardness ratio. The hardness ratio H32 is more generally
used than the other simple ratios such as H21, etc., in dis-
cussions of the GRB data (e.g., et al. ForKouveliotou 1993).
completeness it is necessary to consider six di†erent hard-
nesses, of which only three are independent (e.g., H43, H32,
H21). The remaining three hardnesses are obtainable from
them (H42 \ H43H32 ; H41 \ H42H21 ; H31 \ H32H21).
We see that the product of two hardnesses is a PC, i.e., it
does not correlate with the remaining three PCs.

We note that the BATSE 3B Ñuences have associated
errors, which are listed in the catalog et al.(Meegan 1996).
They are calculated by the BATSE group, taking into
account both systematical and statistical e†ects. The sizes of
these errors are sometimes large, and there are large varia-

TABLE 2

PRINCIPAL COMPONENTS OF THE LOGARITHMS OF THE

FOUR FLUENCES

Percentagea log F1 log F2 log F3 log F4

85.75 . . . . . . . 0.51 0.52 0.52 0.43
11.75 . . . . . . . [0.37 [0.32 [0.04 0.87
2.00 . . . . . . . . 0.56 0.06 [0.78 0.23
0.50 . . . . . . . . 0.53 [0.79 0.31 [0.05

a Percentage of total variation along each particular PC.
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TABLE 3

CORRELATION MATRIX OF THE LOGARITHMS OF THE TWO DURATIONS, FOUR FLUENCES, AND THREE PEAK FLUXES

Quantity log T50 log T90 log F1 log F2 log F3 log F4 log P64 log P256 log P1024
log T50 . . . . . . . . 1 0.97” 0.80” 0.78” 0.71” 0.44” [0.16” [0.01 0.29”
log T90 . . . . . . . . 1 0.83” 0.81” 0.74” 0.48” [0.11¤ 0.05 0.35”
log F1 . . . . . . . . . 1 0.97” 0.90” 0.62” 0.30” 0.44” 0.69”
log F2 . . . . . . . . . 1 0.94” 0.65” 0.35” 0.49” 0.73”
log F3 . . . . . . . . . 1 0.75” 0.47” 0.60” 0.80”
log F4 . . . . . . . . . 1 0.46” 0.53” 0.63”
log P64 . . . . . . . . 1 0.97” 0.84”
log P256 . . . . . . . 1 0.93”
log P1024 . . . . . . 1

NOTES.ÈFor 625 GRBs in the 3B catalog. A ” means that the probability of the existence of correlation (or for a negative
sign, the existence of anticorrelation) is greater than 99.9%, while ¤ means that this probability is between 99% and 99.9%.

tions among them. In order to determine the impact of these
errors on our analysis we used Monte Carlo simulations.
For every burst we obtained new F1, F2, F3, F4 Ñuences,
chosen randomly out of a distribution around the original
3B values, the size of these distributions being determined
by the speciÐc 3B errors listed for the burst considered. We
generated 100 such new data sets and then repeated the
whole data analysis procedure for each sample. These simu-
lations show that neither the correlations in nor theTable 1
PCs in change by more than 0.3% for di†erentTable 2
realizations of the errors (see also Appendix B). The reason
for this is that the spread of the Ñuences around the mean
(the standard deviation of the Fi) is much larger than either
the mean error or the standard deviation of the errors in the
Fi. (For some individual bursts, but by no means for all, the
errors can be of the order of the Ñuence, but this is not the
case for the averages.) This means that the impact of the
listed 3B errors on our PCA calculations is small. (We also
note here that Monte Carlo simulations of the data errors
were done for all of the other correlation matrices and
PCAs presented in this article. In all cases the changes
implied by such simulations were not in excess of 1%.
Hence, the impact of the errors seems to be unimportant
throughout, at least for the present purposes.)

In the present case we have n \ 4 variables in our vector
space, and we ask what the highly signiÐcant number m¹ n
is. There are di†erent criteria for the deÐnition of m (see

For example, in accordance with Jolli†eÏsJolli†e 1986).
rule m is given by the number of principal(Jolli†e 1972),
components that explain more than (70/n)% of the varia-
tions. This cuto† level is 17.7% in our case, which is clearly
not fulÐlled for the second PC. Hence m\ 1, according to

this criterion. Nonetheless, while the third and fourth PCs
clearly can safely be assumed to be ““ fully unimportant,ÏÏ the
second PC, which accounts for ^12% of the variation,
cannot be considered ““ negligible.ÏÏ

Summarizing this sectionÏs results, one can say that as a
rough approximation, most of the information in the four
logarithmic Ñuences is contained in the Ðrst PC, which is
the sum of the logarithms of the Ñuences in the four chan-
nels. In a second more precise approximation, the informa-
tion can be represented by two important quantities or PCs,
which are (a) the sum of the logarithms of the four Ñuences,
and (b) the logarithm of the Ñuence in the fourth channel.

We note that the same is true (with similar levels of prob-
ability of correlation) when the PCA is done for the 3B
Ñuences themselves, rather than than for their logarithms.
In this case the Ðrst PC is in essence the total Ñuence
F\ F1 ] F2 ] F3 ] F4, while the second meaningful PC
is F4.

3. PRINCIPAL COMPONENT ANALYSIS WITH

NINE VARIABLES

In this section we perform a PCA on the 625 bursts in the
3B catalog for which all nine quantities four Ñu-(T50, T90,ences, and the peak Ñuxes on three triggers) are nonzero.
Again, we use as our basic vector space the logarithms of
the quantities, rather than the quantities themselves. The
correlation matrix is given in The PCs of this nine-Table 3.
dimensional space and the percent variation involved in
each of them are shown in Table 4.

From Tables and we see that the Ðrst PC is again3 4
roughly given by the sum of all nine logarithmic quantities
(durations, Ñuences, and peak Ñuxes), with some extra

TABLE 4

PRINCIPAL COMPONENTS OF THE LOGARITHMS OF THE TWO DURATIONS, FOUR FLUENCES, AND THREE PEAK FLUXES

Percentagea log T50 log T90 log F1 log F2 log F3 log F4 log P64 log P256 log P1024
64.8 . . . . . . . . 0.29 0.31 0.39 0.39 0.40 0.32 0.22 0.28 0.35
26.8 . . . . . . . . [0.44 [0.41 [0.16 [0.13 [0.04 0.07 0.53 0.47 0.30
5.1 . . . . . . . . . . [0.07 [0.07 [0.19 [0.18 0.03 0.93 [0.09 [0.14 [0.19
1.5 . . . . . . . . . . [0.48 [0.44 0.53 0.42 0.11 0.04 [0.20 [0.24 [0.11
0.8 . . . . . . . . . . [0.08 [0.13 [0.48 0.05 0.82 [0.16 [0.16 [0.10 0.03
0.5 . . . . . . . . . . [0.12 0.01 [0.04 [0.13 [0.15 0.06 [0.62 0.04 0.75
0.2 . . . . . . . . . . [0.68 0.71 0.00 [0.04 0.06 [0.02 0.05 [0.02 [0.08
0.2 . . . . . . . . . . [0.03 0.05 [0.53 0.77 [0.34 0.06 0.03 [0.06 0.05
0.1 . . . . . . . . . . [0.02 [0.01 [0.01 0.10 0.01 0.00 [0.46 0.78 [0.41

a Percentage of total variation in each PC.
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weight placed on the Ðrst three Ñuences. Because of the
di†erent dimensions involved, it has only a formal meaning.
The second PC, accounting for 26.5% of the variation, is
clearly important, the value being far above Jolli†eÏs 70/
9 \ 7.8% cuto† level. This PC is roughly given by the
formal di†erence of the logarithmic peak Ñuxes and dura-
tions. (The sum would be along the direction of the Ñuence,
but the di†erence is orthogonal, as expected for di†erent
PCs.) This means that the duration, peak Ñux, and total
Ñuence are undoubtedly important quantities, but only two
of them are independent. The third PC, practically deÐned
by F4 alone, accounts for 5.1% of the variation and is
already below Jolli†eÏs level. Hence, m\ 2. However,
because the third PC is just below Jolli†eÏs level, it might
still be of some importance. (This is examined in greater
detail in Appendix A.) The fourth PC, at 1.5%, is far below
Jolli†eÏs limit, and its importance should be even more
questionable.

It is essential in discussing the PCA of this section to
consider also the importance of some instrumental e†ects.
As seen from it is interesting that the duration isTable 3,
anticorrelated with the peak Ñux on 64 ms, noncorrelated
on 256 ms, and positively correlated on 1024 ms. In fact,
there is controversy among di†erent authors in this respect,
since Norris et al. and see an anticorrelation(1994) (1995)
on 256 ms, but et al. do not. These areMitrofanov (1994)
problematic questions, and we think that instrumental
e†ects should play a signiÐcant role in this behavior. For
example, there are strong grounds for arguing that the
correlation between the peak Ñux on 1024 ms and the dura-
tion should have an instrumental origin (Lee & Petrosian

The same situation should occur also for the1996, 1997).
large correlation between Ñuences and durations &(Lee
Petrosian Fortunately, these ambiguities do not1997).
change the conclusion that there are two important PCs,
and that the duration itself is an independent quantity.

One can also, of course, use other quantities as the orig-
inal variables of the vector space. For instance, we have also
performed the same analysis with the quantities themselves,
rather than with the logarithms, and the results are essen-
tially similar. There appears to be no general rule for prefer-
ring logarithms over the quantities themselves. Taking
logarithms has some numerical advantages when dealing
with quantities that vary by many orders of magnitude.

Another possibility is, instead of using the four Ñuences
(or their logarithms), to take their ratios (hardnesses). This
is possible because there is a 1 :1 correspondence between

the four Ñuences and the four new variables deÐned by the
total Ñuence and three independent hardnesses. [One has
then F\F1]F2]F3]F4, H21\F2/F1, H32\F3/F2,
and H43 \ F4/F3, and these four new variables are deÐned
unambiguously by the four original ones. The inverse is
F1 \ F/(H21 ] H21H32 ] H21H32 ] H43H32H21), the
calculation of the remaining three Ñuences being obvious.]
It is interesting to calculate the correlation matrix among
these new quantities (again taking logarithms). These corre-
lation coefficients are presented in Table 5.

The correlation matrix of shows several things.Table 5
First, it is clear that all the hardnesses are anticorrelated (to
º99.9% signiÐcance) with the durations. This fact is, of
course, not new, because, e.g., in et al.Kouveliotou (1993),
the same anticorrelation between H32 and is also pre-T90sented for 222 GRBs. Second, it seems also that the hard-
nesses are not correlated with the total Ñuence. This result is
in principle expected from the discussion in (In the PCA° 2.
for the subspace of the four Ñuences by themselves, we
obtained that the total Ñuence F and the product of H41
and H42 are PCs, and hence they should not correlate. This
also suggests that the individual hardnesses themselves
should not correlate strongly with total Ñuence.) Further-
more, the hardness ratio H32 is signiÐcantly correlated
(º99.9%) with the peak Ñuxes and but inter-P64 P256,estingly, the hardness ratio H43 is anticorrelated with the
peak Ñux also with º99.9% signiÐcance.P1024,

A computation of the PCs corresponding to Table 5
shows that the Ðrst PC (34% variation) is dominated by the
peak Ñux, the second PC (30%) by the duration (both with
contributions from the Ñuence), and the third PC (15%) by
H43.

4. DISCUSSION AND CONCLUSIONS

We have carried out a principal component analysis
(PCA) with the nine variables describing 625 GRBs in the
BATSE 3B catalog. The results of this analysis may be sum-
marized as follows.

1. A PCA for the n \ 9 variables identiÐes a subset of
m\ 2 important variables, i.e., two principal components
(PCs) are unambiguously important, when Jolli†eÏs cri-
terion is applied. These are constructed out of the Ñuence,
peak Ñux, and duration, implying that only two of the three
are independent. This means that in the roughest approx-
imation, it is enough to consider, e.g., a total Ñuence and a
duration, and that these two represent 91.6% of the infor-

TABLE 5

CORRELATION MATRIX FOR LOGARITHMS OF THE DURATIONS, TOTAL FLUENCE, HARDNESSES, AND PEAK FLUXES

Quantity log T50 log T90 log F log H21 log H32 log H43 log P64 log P256 log P1024
log T50 . . . . . . . . 1 0.97” 0.65” [0.23” [0.38” [0.33” [0.16” [0.01 0.29”
log T90 . . . . . . . . 1 0.68” [0.23” [0.38” [0.33” [0.11¤ 0.05 0.35”
log F . . . . . . . . . . 1 [0.08 [0.06 0.03 0.47” 0.58” 0.76”
log H21 . . . . . . . 1 0.24” [0.02 0.16” 0.11¤ 0.03
log H32 . . . . . . . 1 0.28” 0.23” 0.17” 0.01
log H43 . . . . . . . 1 0.02 [0.05 [0.18”
log P64 . . . . . . . . 1 0.97” 0.84”
log P256 . . . . . . . 1 0.93”
log P1024 . . . . . . 1

NOTEÈCorrelation matrix for the logarithms of the two durations ; the total Ñuence F\ F1 ] F2 ] F3 ] F4 ; the hardnesses
H21, H32, H43 ; and the peak Ñuxes for 625 GRBs in the 3B catalog. A ” means that the probability of the existence of correlation
(or for a negative sign, the existence of anticorrelation) is greater than 99.9%, while ¤ means that this probability is between 99%
and 99.9%.
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mation content in the 3B catalog. While in an ideal case the
above dependence is obvious from the deÐnition of these
quantities, it is not clear that it should continue to hold for
sources in a Ñux-limited sample with complicated light
curves, located at increasing distances and subject to com-
plicated detection biases. However our analysis shows that
this result is valid for the 3B sample of sources, even if the
relation between the Ñuence and the duration (or peak Ñux)
is heavily inÑuenced by instrumental e†ects.

2. From the remaining PCs, the third is deÐnitely non-
negligible, although strictly it is already below Jolli†eÏs
cuto† level. This third PC is roughly identical to the Ñuence
in the fourth (highest energy) channel F4. This means that
in a Ðner approximation one could take, e.g., duration, total
Ñuence, and F4 as variables containing signiÐcant informa-
tion. The fact that F4 has a di†erent behavior than the
remaining three Ñuences was also conÐrmed by a PCA of
the subset of four Ñuences alone. This di†erent behavior of
the fourth channel is also manifested by the fact that the
hardness ratio H43 has a much bigger variance than the
commonly used H32. The Ðrst three PCs account for 96.7%
of the total information available in the 3B catalog.

3. A fourth PC is deÐned, in essence, by the ratio of
Ñuence and peak Ñux. Thus, in an even Ðner approximation
one would, in addition to the above three PCs, also consider
the information provided by considering the Ñuence and the
peak Ñux separately. However, the latter does not add much
new information (only 1.5% more ; see In otherTable 4).
words, in the Ðnest approximation one can take, e.g., the
total Ñuence, duration, F4, and peak Ñux : this contains
98.2% of the total information content of the 3B catalog
with nine entries per burst.

4. The most meaningful single value of the duration,
Ñuence, and peak Ñux for each event that can be constructed
from the nine entries in the 3B catalog is obtained by using
the weights given in the Ðrst line of for that physicalTable 4
variable (e.g., a duration would be deÐned by using relative
weights of 0.29 and 0.31 for and with an appropri-T50 T90,ate normalization, etc.).

The above statements are purely statistical and deliber-
ately omit any extra information concerning the oper-
ational way in which quantities are measured or theoretical
models of what the data may mean. The facts that the
Ñuence and durations are the most important quantities,
and that a hardness and the peak Ñux are also useful, are
agreed upon at a qualitative level by most people in the
Ðeld. However, what is new here is the more rigorous quan-
tiÐcation of the level of importance that can be assigned by
the PCA method to each quantum of information and the
corresponding ordering or prioritization of the di†erent
quantities that this a†ords. This quantiÐcation also allows
one, for instance, to decide whether some alternative deÐni-
tions of the basic quantities contain more information than
others.

From a statistical information viewpoint, there appears
to be no signiÐcant preference between, e.g., the durations

and and on the same basis, a choice between theT90 T50 ;
peak Ñuxes on the trigger timescales would appear to be
approximately inconsequential. Of course, additional
instrumental, operational, or physical model considerations
would serve to reÐne such choices, depending on what one
is seeking or on the hypothesis that one wants to test. For
example, in et al. remarkable conclusions areChe (1997),

drawn from the di†erences between the peak Ñuxes on the
64 and 1024 ms triggers.

Some of the results are unexpected. For instance, the
analysis indicates that an allowable approximation would
be to combine (add) the Ñuences in the Ðrst three channels
and consider them in conjunction with the Ñuence F4 in the
fourth channel as the basis vectors for the Ñuence space.
This singling out of F4 based on its (statistical) information
content appears to be new. As is known, the hardness ratio
H32 is most often used in statistical analyses of the BATSE
data (or sometimes H21). However, H32 appears to have a
signiÐcantly smaller variance than H43. It seems paradoxi-
cal, from the information content viewpoint, to concentrate
attention on a variable of relatively small variance while
generally ignoring other variables that have a much greater
variance, namely H43. Of course, a careful consideration is
required of whether the greater variance of H43 results from
greater photon noise or other larger errors in determining
F4, or from physically interesting facts (e.g., the spectral
break occurring in the fourth channel or an additional
steepening of the spectral index occurring there, etc.).

A concern here is that (as we understand it) the BATSE
channel 4 Ñuence listed in the 3B catalog is obtained from a
Ðt of a lognormal function across all four channels, and in
the range above 300 keV, there is only one data point to
anchor the extrapolation of this model shape (and the 3B
usage of Ñuences in ergs further accentuates the uncertainty
of this extrapolation). One way to address the importance of
errors in F4 is by noting the fact that although the error of
F4 is much higher than that of the remaining three chan-
nels, the variance of the logarithms of the Fi (discussed in
this work) turned out to be roughly the same. The higher
variance in H43 is therefore probably explained by the sig-
niÐcantly lower correlation between F4 and the other three
channels (see We note here again that, as shown byTable 1).
the Monte Carlo simulations, a consideration of the errors
listed in the 3B catalog does not change the singling out of
F4 and its smaller degree of correlation to the other three
(see also Appendix B). Since the Ðrst three channels correl-
ate pretty well between themselves, they may be explained
by the same PCs. On the contrary, because of its lower
correlation with the other three, the fourth channel evi-
dences the need for a further PC to account for it fully.
Hence the fourth channel indicates some sort of additional
information that is not contained in the other three. We
strongly suspect that this additional information is of a
physical nature (e.g., related to the di†erence between high-
energy [HE] and no-HE pulses and bursts ; et al.Pendleton
1997).

Another reason why H43 may be of interest is that it
shows a signiÐcant anticorrelation with the peak Ñux,
whereas H32 shows a correlation The PCA(Table 5).
analysis presented here, in any case, suggests that more
information may be available from a careful analysis of
quantities involving the fourth channel than has been pre-
viously realized.

Finally, we note that the PCA o†ers a simple method for
estimating the degree of improvement in information
content that is potentially achievable by performing di†er-
ent manipulations of the data set beyond what is made in
the 3B catalog or in its future incarnations. For instance, in
designing new analyses that involve various corrections
(instrumental or otherwise) to the data, one can use the
PCA to measure quantitatively the increase, if any, in the
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amount of information available from new deÐnition of the
variables to be studied. The PCA is therefore a tool of
signiÐcant potential usefulness in planning data analysis
strategies.
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APPENDIX A

3B FACTOR ANALYSIS WITH NINE VARIABLES

The purpose of this appendix is to conÐrm the results of with the use of the factor analysis (FA). The FA is a statistical° 3
method that is closely related to, but not fully identical to, the PCA. (The comparison of these two methods is discussed in
detail in, e.g., In essence, the major distinction between the PCA and the FA comes from the fact that the FAJolli†e 1986).
immediately assumes that the observed n variables are linear combinations of only m\ n variables, which contain the basic
information in the data. The fulÐllment of this assumption is then tested. A possible way to test this is the following : if m new
variables are sufficient, then by using only these, one can reproduce the correlation matrix from the m quantities themselves
with a high accuracy. From the level of this accuracy one may deduce the correctness of the assumption (for details see Jolli†e

& Stuart1986 ; Kendall 1976).
In our case this statistical method may be useful, because it gives a further independent criterion besides that given by

Jolli†e. In one obtained m\ 2 for n \ 9 from Jolli†eÏs criterion. Nevertheless, as noted there, the third PC was just barely° 3
below the threshold of signiÐcance, and therefore one may ask whether it should be considered or not. In the correlation° 3
matrix and the results of a PCA are presented, and m\ 2 is deduced. Taking m\ 2, one may try to(Table 3) (Table 4)
reproduce the correlation matrix using only these two PCs. The results of this procedure are shown in Table 6.

The ““ reproduced correlation matrix ÏÏ is presented in the lower left triangle. For comparison, in the upper right triangle the
di†erences (““ residuals ÏÏ) between the observed correlations and the reproduced correlations are presented. One sees straight-
forwardly that the largest di†erences arise when the correlations involve F4. On the diagonal (asterisks) one should have
values close to unity, if the PCs considered explain the corresponding observed variable well. Clearly, the departures from
unity are again much larger for F4 than for any other quantity. Performing the test using the quantity given by the equation
(43.132) of & Stuart we came to the conclusion that the assumption of m\ 2 probably does not fully accountKendall (1976),
for the quantity F4, and therefore a third PC is probably required.

APPENDIX B

CORRELATION COEFFICIENTS AND ERRORS

A measurement of two statistical variables x and y subject to measurement errors and results in speciÐc valuese
x

e
y

x6 \ x ] e
x

, y6 \ y ] e
y
,

where x and y are the ideal values in the absence of errors. The covariance of the two variables is

Sx6 , y6 T \ Sx, yT ] Sx, e
y
T ] Se

x
, yT ] Se

x
, e

y
T ,

and unless the errors are of an unusual type, in the right-hand side the only nonzero term is Sx, yT. This is beacuse one expects
the x (y) and the to be independent, so their covariances vanish, leading to yT. Thus, the e†ect of errors ise

y
(e

x
) Sx6 , y6 T \Sx,

expected to be negligible in the covariance.

TABLE 6

RESULTS OF THE FACTOR ANALYSIS OF THE NINE QUANTITIES USED IN ° 3

Quantity log T50 log T90 log F1 log F2 log F3 log F4 log P64 log P256 log P1024
log T50 . . . . . . . . 0.955* 0.019 [0.024 [0.020 [0.012 [0.030 0.019 0.020 0.009
log T90 . . . . . . . . 0.955 0.958* [0.021 [0.019 [0.014 [0.031 0.017 0.019 0.011
log F1 . . . . . . . . . 0.820 0.848 0.925* 0.036 [0.019 [0.073 [0.000 [0.001 0.005
log F2 . . . . . . . . . 0.803 0.834 0.936 0.950* 0.002 [0.073 [0.001 [0.003 0.005
log F3 . . . . . . . . . 0.722 0.759 0.918 0.939 0.948* 0.004 [0.009 [0.011 [0.008
log F4 . . . . . . . . . 0.473 0.509 0.693 0.718 0.745 0.607* [0.041 [0.058 [0.076
log P64 . . . . . . . . [0.183 [0.125 0.297 0.352 0.475 0.499 0.969* 0.010 [0.009
log P256 . . . . . . . [0.028 0.031 0.440 0.495 0.606 0.589 0.961 0.979* 0.014
log P1024 . . . . . . 0.281 0.336 0.680 0.726 0.805 0.709 0.849 0.916 0.955*

NOTES.ÈThe lower left triangle contains the reproduced correlation matrix ; the upper right triangle contains the residuals between the
observed correlations and the reproduced correlations ; asterisks indicate the diagonal elements of the reproduced correlation matrix.
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The correlation coefficent in the absence of errors is

r
xy

\ Sx, yT
p
x
p
y

,

where xT and yT. In the presence of errors, however, we havep
x
2\Sx, p

y
2\Sy,

r6
xy

\ Sx, yT
p
x
p
y

,

where we use the fact that in the numerator there is no change, and

p
x
2\ Sx, xT ] 2Sx, e

x
T ] Se

x
, e

x
T .

While, as before, one expects that Sx, the last term is nonzero, and the same is true for the y variable.e
x
T \ 0, Se

x
, e

x
T

However, the order of magnitude of this last nonzero term (the ““ dispersion of the error ÏÏ) is very di†erent from that of the
dispersion of x, and, in fact, xT. It also follows that the measured correlations are generally smaller than theSe

x
, e

x
T > Sx,

ideal (error-free) correlations (o r6
xy

o¹ o r
xy

o).
Concretely, if x is F3, and y is F4, then the fact that xT and yT can be veriÐed directly from theSe

x
, e

x
T > Sx, Se

y
, e

y
T >Sy,

3B database. The catalog shows that while in some cases the domain of the y (i.e., the spread of the F4) is much greatere
y
^ y,

than the domains of the corresponding (the spread of the In particular, for channels 1, 2, 3, and 4, the standarde
y

eF4).deviation of the Ñuences around the mean and the mean error are given by the following pairs 2.18 o 0.02, 2.22 o 0.02,(p
F
o e6 ) :

8.88 o 0.06, and 29.93 o 0.64 (the corresponding standard deviations of the errors around the mean error are also small, 0.02,
0.02, 0.07, and 0.74). Thus, the fact that the errors are sometimes comparable to the measured value in a fraction of(o e

y
o^ y,

the cases) does not mean that the correlation coefficients vary by much. The e†ect of the errors on the correlations is nonzero,
but from the above it is expected to be small, and there should be no relationship between the magnitude of the di†erence
between and and the number of GRBs measured.r

xy
r6
xyThis is veriÐed by the Monte Carlo simulations, which used the errors listed in the 3B catalog for every burst to determine a

distribution out of which new values of F1, F2, F3, and F4 were chosen at random. This was done for every burst in the
sample and repeated 100 times in order to calculate new correlation matrices and new PCs. The results varied at most by
D0.3%. This shows that the fact that there are large errors in some bursts does not a†ect the conclusions about the
correlation or lack of correlation between F4 and the other variables. Similar Monte Carlo simulations were done for the
nine-variable case and for all correlations and PCs discussed in this paper. The results never varied by more than 1%.
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