113 research outputs found

    Tensile behaviour of polyethylene under different loading rates in the presence of imperfections

    Get PDF
    This paper highlights the changes of polyethylene behaviour during various loading rates. The experimental programme was carried out on samples taken from PE80 polyethylene gas pipes with simulated imperfections with bilateral V-notch, U-notch and central hole. The hybrid technique tensile test - infrared test was used for examining the fracture behaviour of PE80 thermoplastic material samples under different loading rates. Correlation between the loading rate and tensile strength of polyethylene has been established. It has been shown that tensile strength varies with loading rate according to a logarithmic law. Also, it was shown that viscoelastic-plastic character of the polymer material influences directly the specific response of material to loading rates

    Numerical simulation of tensile testing of pe 80 polymer specimens

    Get PDF
    The aim of this paper is to present the behaviour of specimens made of polyethylene material PE 80, subjected to tensile load until failure. Measurements of the temperature distribution have been done using the infrared thermography during specimens loading. Finite element analysis was performed in ABAQUS software, where numerical models were made based on the thermograms and force-displacement diagrams obtained from these experiments. Afterwards, results from the simulation were compared with the experimental results and it was determined in which way the model can be optimized so that these results comply at an acceptable level. Numerical model has shown that the highest values of plastic strain were located near the notch. Value of this plastic strain is several times greater than the values in the remaining parts of the specimen. The numerical analysis also determined that defining the load in displacement form was a much better solution than defining it using the force, since the results have shown much better compliance, and the calculation time was much shorter in this case

    Tensile behaviour of polyethylene under different loading rates in the presence of imperfections

    Get PDF
    This paper highlights the changes of polyethylene behaviour during various loading rates. The experimental programme was carried out on samples taken from PE80 polyethylene gas pipes with simulated imperfections with bilateral V-notch, U-notch and central hole. The hybrid technique tensile test - infrared test was used for examining the fracture behaviour of PE80 thermoplastic material samples under different loading rates. Correlation between the loading rate and tensile strength of polyethylene has been established. It has been shown that tensile strength varies with loading rate according to a logarithmic law. Also, it was shown that viscoelastic-plastic character of the polymer material influences directly the specific response of material to loading rates

    Lassoing and corraling rooted phylogenetic trees

    Full text link
    The construction of a dendogram on a set of individuals is a key component of a genomewide association study. However even with modern sequencing technologies the distances on the individuals required for the construction of such a structure may not always be reliable making it tempting to exclude them from an analysis. This, in turn, results in an input set for dendogram construction that consists of only partial distance information which raises the following fundamental question. For what subset of its leaf set can we reconstruct uniquely the dendogram from the distances that it induces on that subset. By formalizing a dendogram in terms of an edge-weighted, rooted phylogenetic tree on a pre-given finite set X with |X|>2 whose edge-weighting is equidistant and a set of partial distances on X in terms of a set L of 2-subsets of X, we investigate this problem in terms of when such a tree is lassoed, that is, uniquely determined by the elements in L. For this we consider four different formalizations of the idea of "uniquely determining" giving rise to four distinct types of lassos. We present characterizations for all of them in terms of the child-edge graphs of the interior vertices of such a tree. Our characterizations imply in particular that in case the tree in question is binary then all four types of lasso must coincide

    Constraints on Type Ib/c and GRB Progenitors

    Get PDF
    Although there is strong support for the collapsar engine as the power source of long-duration gamma-ray bursts (GRBs), we still do not definitively know the progenitor of these explosions. Here we review the current set of progenitor scenarios for long-duration GRBs and the observational constraints on these scenarios. Examining these, we find that single-star models cannot be the only progenitor for long-duration GRBs. Several binary progenitors can match the solid observational constraints and also have the potential to match the trends we are currently seeing in the observations. Type Ib/c supernovae are also likely to be produced primarily in binaries; we discuss the relationship between the progenitors of these explosions and those of the long-duration GRBs.Comment: 36 pages, 6 figure

    Two-loop world-sheet corrections in AdS_5 x S^5 superstring

    Full text link
    We initiate the computation of the 2-loop quantum AdS_5 x S^5 string corrections on the example of a certain string configuration in S^5 related by an analytic continuation to a folded rotating string in AdS_5 in the ``long string'' limit. The 2-loop term in the energy of the latter should represent the subleading strong-coupling correction to the cusp anomalous dimension and thus provide a further check of recent conjectures about the exact structure of the Bethe ansatz underlying the AdS/CFT duality. We use the conformal gauge and several choices of the \kappa-symmetry gauge. While we are unable to verify the cancellation of 2d UV divergences we compute the bosonic contribution to the effective action and also determine the non-trivial finite part of the fermionic contribution. Both the bosonic and the fermionic contributions to the string energy happen to be proportional to the Catalan's constant. The resulting value for 2-loop superstring prediction for the subleading coefficient a_2 in the scaling function matches the numerical value found in hep-th/0611135 from the BES equation.Comment: 48 pages, 1 Figure. v3: several mistakes corrected, the finite result for the 2-loop coefficient is found to agree with the numerical value found by Benna et al in hep-th/061113

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies
    corecore