26 research outputs found

    Carbohydrate Intake in Form of Gel Is Associated With Increased Gastrointestinal Distress but Not With Performance Differences Compared With Liquid Carbohydrate Ingestion During Simulated Long-Distance Triathlon

    Get PDF
    The ingestion of exogenous carbohydrates (CHO) during prolonged endurance exercise, such as long-distance triathlon, is considered beneficial with regard to performance. However, little is known about whether this performance benefit differs among different forms of CHO administration. To this end, the purpose of our study was to determine the impact of CHO ingestion from a semisolid source (GEL) on measures of performance and gastrointestinal (GI) comfort compared with CHO ingestion from a liquid source (LIQ). Nine well-trained triathletes participated in this randomized crossover study. Each participant completed a 60-min swim, 180-min bike exercise, and a 60-min all-out run in a laboratory environment under 2 conditions, once while receiving 67.2 ± 7.2 g · h–1 (M ± SD) of CHO from GEL and once while receiving 67.8 ± 4.2 g · h–1 of CHO from LIQ. The amount of fluid provided was matched among conditions. Respiratory exchange ratio (RER), blood glucose, and lactate as well as GI discomfort were assessed at regular intervals during the experiment. The distance covered during the final all-out run was not significantly different among participants ingesting GEL (11.81 ± 1.38 km) and LIQ (11.91 ± 1.53 km; p = .89). RER, blood glucose, and lactate did not differ significantly at any time during the experiment. Seven participants reported GI discomfort with GEL, and no athlete reported GI discomfort with LIQ (p = .016). This study suggests that administration of GEL does not alter long-distance triathlon performance when compared with LIQ, but GEL seems to be associated with reduced GI tolerance. Athletes should consider this a potential disadvantage of GEL administration during long-distance triathlon

    Carbohydrate Intake in Form of Gel Is Associated With Increased Gastrointestinal Distress but Not With Performance Differences Compared With Liquid Carbohydrate Ingestion During Simulated Long-Distance Triathlon

    Get PDF
    The ingestion of exogenous carbohydrates (CHO) during prolonged endurance exercise, such as long-distance triathlon, is considered beneficial with regard to performance. However, little is known about whether this performance benefit differs among different forms of CHO administration. To this end, the purpose of our study was to determine the impact of CHO ingestion from a semisolid source (GEL) on measures of performance and gastrointestinal (GI) comfort compared with CHO ingestion from a liquid source (LIQ). Nine well-trained triathletes participated in this randomized crossover study. Each participant completed a 60-min swim, 180-min bike exercise, and a 60-min all-out run in a laboratory environment under 2 conditions, once while receiving 67.2 ± 7.2 g · h–1 (M ± SD) of CHO from GEL and once while receiving 67.8 ± 4.2 g · h–1 of CHO from LIQ. The amount of fluid provided was matched among conditions. Respiratory exchange ratio (RER), blood glucose, and lactate as well as GI discomfort were assessed at regular intervals during the experiment. The distance covered during the final all-out run was not significantly different among participants ingesting GEL (11.81 ± 1.38 km) and LIQ (11.91 ± 1.53 km; p = .89). RER, blood glucose, and lactate did not differ significantly at any time during the experiment. Seven participants reported GI discomfort with GEL, and no athlete reported GI discomfort with LIQ (p = .016). This study suggests that administration of GEL does not alter long-distance triathlon performance when compared with LIQ, but GEL seems to be associated with reduced GI tolerance. Athletes should consider this a potential disadvantage of GEL administration during long-distance triathlon

    Sympathetic nervous system activity and anti-lipolytic response to iv-glucose load in subcutaneous adipose tissue of obese and obese type 2 diabetic subjects

    Get PDF
    The study aim was to investigate the effect of endogenous insulin release on lipolysis in subcutaneous adipose tissue after adrenergic stimulation in obese subjects diagnosed with type 2 diabetes (T2D). In 14 obese female T2D subjects, or 14 obese non-T2D controls, glycerol concentration was measured in response to the α1,2,ß-agonist norepinephrine, the α1-agonist norfenefrine and the ß2-agonist terbutaline (each 10-4 M), using the microdialysis technique. After 60 minutes of stimulation, an intravenous glucose load (0.5 g/kg lean body mass) was given. Local blood flow was monitored by means of the ethanol technique. Norepinephrine and norfenefrine induced a four and three fold rise in glycerol dialysate concentration (p\u3c0.001, each), with a similar pattern in adipose tissue. Following agonist stimulation and glucose infusion, endogenous insulin release inhibited lipolysis in the presence of norepinephrine, which was more rapid and pronounced in healthy obese controls than in T2D subjects (p = 0.024 obese vs T2D subjects). Insulin-induced inhibition of lipolysis in the presence of norfenefrine was similar in all study participants. In the presence of terbutaline the lipolysis rate increased two fold until the effect of endogenous insulin (p\u3c0.001). A similar insulin-induced decrease in lipolysis was observed for each of the norfenefrine groups and the terbutaline groups, respectively. Adipose tissue blood flow remained unchanged after the iv-glucose load. Both norepinephrine and norfenefrine diminished blood flow slightly, but insulin reversed this response (p\u3c0.001 over the entire time). Terbutaline alone and terbutaline plus increased endogenous insulin augmented local blood flow (p\u3c0.001 over the entire time). In conclusion, a difference in insulin-induced inhibition of lipolysis was observed in obese T2D subjects compared to obese healthy controls following modulation of sympathetic nervous system activity and is assumed to be due to ß1-adrenoceptor mediated stimulation by norepinephrine

    Quantitation of Formoterol, Salbutamol, and Salbutamol-4′-O-Sulfate in Human Urine and Serum via UHPLC-MS/MS

    Get PDF
    The adrenergic beta-2 agonists formoterol and salbutamol are used for the treatment of asthma and COPD but are also misused in sports competitions. Therefore, they are included in WADA regulations. Both drugs are mainly excreted in urine after administration via inhalation. A four-armed, double-blind cross-over clinical trial was conducted involving endurance-trained participants (12 females and 12 males). Inhalation dosages of 36 μg formoterol, 1200 μg salbutamol, a combination of both, or a placebo were administered before exercise. Serum and urine were collected after exercise and 3 and 24 h after administration. Here, we show the successful quantitation of formoterol, salbutamol, and its phase II metabolite salbutamol-4′-O-sulfate in all urine and serum samples using ultra-high performance liquid chromatography–tandem mass spectrometry. In the serum analysis, results of up to 14.2 pg/mL formoterol, 10.0 ng/mL salbutamol, and 21.4 ng/mL salbutamol-4′-O-sulfate (calculated as salbutamol equivalent) were found. In urine, maximum concentrations (after deglucuronidation) were 17.2 ng/mL formoterol, 948.5 ng/mL salbutamol, and 2738.5 ng/mL salbutamol-4′-O-sulfate. Sex-specific differences in serum concentrations as well as in urinary excretion were observed. The results pronounce the importance of the implementation and elucidation of phase II metabolites to quantitation methods in antidoping

    Aerobic Interval Training and Cardiometabolic Health in Patients with Type 2 Diabetes: A Meta-Analysis

    No full text
    Vigorous to maximal aerobic interval training (INT) has received remarkable interest in improving cardiometabolic outcomes for type 2 diabetes patients recently, yet with inconsistent findings. This meta-analysis was aimed to quantify its effectiveness in type 2 diabetes. Randomized controlled trials (RCTs) were identified by searches of 3 databases to October 2017, which evaluated the effects of INT with a minimal training duration of 8 weeks vs. moderate-intensity continuous training (MICT) or non-exercise training (NET) among type 2 diabetes patients on outcomes including cardiorespiratory fitness, glycemic control, body composition, blood pressure, and lipid profiles. Weighted mean differences with 95% confidence intervals (CIs) were calculated with the random-effects model. Nine datasets from 7 RCTs with 189 patients were included. Compared with MICT, INT improved maximal oxygen consumption (VO2max) by 2.60 ml/kg/min (95% CI: 1.32 to 3.88 ml/kg/min, P <0.001) and decreased hemoglobin A1c (HbA1c) by 0.26% (95% CI: −0.46% to −0.07%, P = 0.008). These outcomes for INT were also significant vs. energy expenditure-matched MICT, with VO2max increased by 2.18 ml/kg/min (P = 0.04) and HbA1c decreased by 0.28% (P = 0.01). Yet their magnitudes of changes were larger compared with NET, with VO2max increased by 6.38 ml/kg/min (P <0.001) and HbA1c reduced by 0.83% (P = 0.004). Systolic blood pressure could be lowered by INT compared with energy expenditure-matched MICT or NET (both P <0.05), but other cardiometabolic markers and body composition were not significantly altered in general. In conclusion, despite a limited number of studies, INT improves cardiometabolic health especially for VO2max and HbA1c among patients with type 2 diabetes, and might be considered an alternative to MICT. Yet the optimal training protocols still require to be established

    Exercise training and endothelial function in patients with type 2 diabetes: a meta-analysis

    No full text
    Abstract Background and aims Exercise training is considered a cornerstone in the management of type 2 diabetes, which is associated with impaired endothelial function. However, the association of exercise training with endothelial function in type 2 diabetes patients has not been fully understood. This meta-analysis aimed to investigate their associations with focus on exercise types. Methods Databases were searched up to January 2018 for studies evaluating the influences of exercise training with durations ≥ 8 weeks on endothelial function assessed by flow-mediated dilation (FMD) among type 2 diabetes patients or between type 2 diabetics and non-diabetics. Data were pooled using random-effects models to obtain the weighted mean differences (WMDs) and 95% confidence intervals (CIs). Results Sixteen databases were included. Exercise training resulted in an overall improvement in FMD by 1.77% (95% CI 0.94–2.59%) in type 2 diabetes patients. Specifically, both aerobic and combined aerobic and resistance exercise increased FMD by 1.21% (95% CI 0.23–2.19%) and 2.49% (95% CI 1.17–3.81%), respectively; but resistance exercise only showed a trend. High-intensity interval aerobic exercise did not significantly improve FMD over moderate-intensity continuous exercise. Notably, the improvement in FMD among type 2 diabetes patients was smaller compared with non-diabetics in response to exercise training (WMD − 0.72%, 95% CI − 1.36 to − 0.08%) or specifically to aerobic exercise (WMD − 0.65%, 95% CI − 1.31 to 0.01%). Conclusions Exercise training, in particular aerobic and combined exercise, improves endothelial function in type 2 diabetes patients, but such an improvement appears to be weakened compared with non-diabetics. Trial registration PROSPERO CRD4201808737

    SchumannData

    No full text
    Dataset-file from Sympathetic nervous system activity and anti-lipolytic response to IV-glucose load in subcutaneous adipose tissue of obese and obese type 2 diabetic subject

    Do skeletal muscle composition and gene expression as well as acute exercise-induced serum adaptations in older adults depend on fitness status?

    Get PDF
    BACKGROUND: Inactive physical behavior among the elderly is one risk factor for cardiovascular disease, immobility and increased all-cause mortality. We aimed to answer the question whether or not circulating and skeletal muscle biomarkers are differentially expressed depending on fitness status in a group of elderly individuals. METHODS: Twenty-eight elderly individuals (73.36 ± 5.46 years) participated in this exploratory study after participating as part of the multinational SITLESS-clinical trial (implementation of self-management and exercise programs over 16 weeks). A cardiopulmonary exercise test (CPX) and resting skeletal muscle biopsy were performed to determine individual physiological performance capacity. Participants were categorized into a high physical fitness group (HPF) and a low physical fitness group (LPF) depending on peak oxygen uptake (VO(2)peak). Serum blood samples were taken before (pre) and after (post) CPX and were examined regarding serum BDNF, HSP70, Kynurenine, Irisin and Il-6 concentrations. Skeletal muscle tissue was analyzed by silver staining to determine the myosin heavy chain (MyHC) composition and selected genes by qRT-PCR. RESULTS: HPF showed lower body weight and body fat, while skeletal muscle mass and oxygen uptake at the first ventilatory threshold (VO(2)T1) did not differ between groups. There were positive associations between VO(2)peak and VO(2)VT1 in HPF and LPF. MyHC isoform quantification revealed no differences between groups. qRT-PCR showed higher expression of BDNF and BRCA1 in LPF skeletal muscle while there were no differences in other examined genes regarding energy metabolism. Basal serum concentrations of Irisin were higher in HPF compared to LPF with a trend towards higher values in BDNF and HSP70 in HPF. Increases in Il-6 in both groups were observed post. CONCLUSIONS: Although no association between muscle composition/VO(2)peak with fitness status in older people was detected, higher basal Irisin serum levels in HPF revealed slightly beneficial molecular serum and muscle adaptations. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02629666. Registered 19 November 2015. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12877-021-02666-0
    corecore