52 research outputs found

    Human Coronavirus Virulence Motifs and Virulence

    Get PDF
    Trabajo presentado en el XIV International Nidovirus Symposium (Nido2017), celebrado en Kansas City, Missouri (Estados Unidos), del 4 al 9 de junio de 2017We have shown that SARS-CoV E protein is a virulence factor that includes at least two virulence motifs: its ion channel (IC) activity encoded within the transmembrane domain and a PDZ binding motif (PBM) located at its carboxy-terminus. We showed that E protein pathogenicity was caused by the activation of different host signaling pathways. One of them was the activation of inflammasome, a process mediated by the conductance of Ca++ byEprotein IC activity, leading to an increased expression of IL-1beta, TNF-alpha and IL-6 levels. Another signaling pathway implied the activation of a proinflammatory response mediated by NF-kB activation. This activation was a consequence of E protein-syntenin binding mediated by PBM-PDZ interactions. This binding caused an increase of p38MAPK phosphorylation promoting the induction of acute respiratory distress syndrome (ARDS), edema and death of mice infected with a mouse adapted SARS-CoV. The relevance of p38 MAPK activation after infection with the mouse adapted SARS-CoV was confirmed by the protection of mice in the presence of an inhibitor of p38 MAPK, but not in its absence. These results illustrated the identification of an efficient coronavirus (CoV) antiviral. The presence of a virulence factor such as the PBM motif in E protein allows the virus to interact with more than 400 cell proteins containing PDZ motifs, conferring the virus the potential to control a high number of cell-signaling pathways increasing its replication and virulence. In fact, we are analyzing the proteome of the viral PBM-cellular PDZ interactions using system biology approaches. Frequently, the ARDS caused by lung infection with mild respiratory viruses is resolved before it evolves to serious edema. In contrast, after SARS-CoV infection frequently this resolution does not take place. We have shown the binding of E protein to a main mediator of edema resolution, the Na+ /K+ ATPase, and proposed that this may be one of the procedures by which edema recovery is prevented after SARS-CoV infection, either by inhibition of Na+ /K+ ATPase activity or by relocating this enzyme to another subcellular compartment. Deadly human CoVs as SARS- and MERS-CoVs have at least two viral proteins with IC activity and PBM motifs. Studies on the relevance of E and 3a SARS-CoV proteins in replication and virulence, and the interdependence among them have shown that the presence in the virus of at least E or 3a proteins was needed for virus viability. In fact, we have shown that the complementation between E and 3a proteins is mediated by the PBM motifs located at the carboxy-terminus of these proteins. Our studies on the interaction of SARS-CoV and MERS-CoV with the host, and the engineering of reverse genetics systems for each of these viruses, led us to the development of genetically stable vaccine candidates that provided full-protection against the challenge with the homologous virulent virus using mice models

    SARS-CoV-2 Mac1 is an essential virulence factor

    Get PDF
    Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in this set of proteins is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and interferon-stimulated gene (ISG) expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target.National Institutes of Health (NIH) grant P20GM103648 (RC) National Institutes of Health (NIH) grant 2P01AI060699 (LE) National Institutes of Health (NIH) grant P20GM113117 (ARF) National Institutes of Health (NIH) grant K22AI134993 (ARF) National Institutes of Health (NIH) grant R35GM138029 (ARF) National Science Foundation (NSF) grant 2135167 (RLU) University of Kansas General Research Fund (GRF) and Start-up funds (ARF) NIH Graduate Training at the Biology-Chemistry Interface grant T32GM132061 (CMK) University of Kansas College of Liberal Arts and Sciences Graduate Research Fellowship (CMK) Government of Spain (PID2019-107001RB-I00 AEI/FEDER, UE) LE European Commission (H2020-SC1-2019, ISOLDA Project nº 848166-2) LEN

    Nature of viruses and pandemics: Coronaviruses

    Get PDF
    Coronaviruses (CoVs) have the largest genome among RNA viruses and store large amounts of information without genome integration as they replicate in the cell cytoplasm. The replication of the virus is a continuous process, whereas the transcription of the subgenomic mRNAs is a discontinuous one, involving a template switch, which resembles a high frequency recombination mechanism that may favor virus genome variability. The origin of the three deadly human CoVs SARS-CoV, MERS-CoV and SARS-CoV-2 are zoonotic events. SARS-CoV-2 has incorporated in its spike protein a furine proteolytic site that facilitates the activation of the virus in any tissue, making this CoV strain highly polytropic and pathogenic. Using MERS-CoV as a model, a propagation-deficient RNA replicon was generated by removing E protein gene (essential for viral morphogenesis and involved in virulence), and accessory genes 3, 4a, 4b and 5 (responsible for antagonism of the innate immune response) to attenuate the virus: MERS-CoV-Δ[3,4a,4b,5,E]. This RNA replicon is strongly attenuated and elicits sterilizing protection after a single immunization in transgenic mice with the receptor for MERS-CoV, making it a promising vaccine candidate for this virus and an interesting platform for vector-based vaccine development. A strategy could be developed for the design of RNA replicon vaccines for other human pathogenic coronaviruses.This work was supported by grants from the Government of Spain (PID2019-107001RB-I00 AEI/FEDER, UE; SEV 2017-0712 and PIE_INTRAMURAL_LINEA 1-202020E079), the CSIC (PIE_INTRAMURAL-202020E043), the European Commission (ISOLDA_848166 H2020-SC1-2019-Two-Stage-RTD, RIA; MANCO_101003651 H2020-SC1-PHE-CORONAVIRUS-2020 RIA), and the U.S. National Institutes of Health (NIH_2P01AI060699).Peer reviewe

    Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19

    Get PDF
    Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective, but vaccine efficacy is partly compromised by the emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially for aged populations. Here we describe the isolation of highly virulent mouse-adapted viruses and use them to test a new therapeutic drug in infected aged animals. Many of the alterations observed in SARS-CoV-2 during mouse adaptation (positions 417, 484, 493, 498 and 501 of the spike protein) also arise in humans in variants of concern2. Their appearance during mouse adaptation indicates that immune pressure is not required for selection. For murine SARS, for which severity is also age dependent, elevated levels of an eicosanoid (prostaglandin D2 (PGD2)) and a phospholipase (phospholipase A2 group 2D (PLA2G2D)) contributed to poor outcomes in aged mice3,4. mRNA expression of PLA2G2D and prostaglandin D2 receptor (PTGDR), and production of PGD2 also increase with ageing and after SARS-CoV-2 infection in dendritic cells derived from human peripheral blood mononuclear cells. Using our mouse-adapted SARS-CoV-2, we show that middle-aged mice lacking expression of PTGDR or PLA2G2D are protected from severe disease. Furthermore, treatment with a PTGDR antagonist, asapiprant, protected aged mice from lethal infection. PTGDR antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, suggesting that the PLA2G2D–PGD2/PTGDR pathway is a useful target for therapeutic interventions.This work is supported in part by grants from the National Institutes of Health USA (NIH; P01 AI060699 (S.P. and P.B.M.) and R01 AI129269 (S.P.)) and BIOAGE Labs (S.P.). The Pathology Core is partially supported by the Center for Gene Therapy for Cystic Fibrosis (NIH grant P30 DK-54759) and the Cystic Fibrosis Foundation. P.B.M. is supported by the Roy J. Carver Charitable Trust. L.-Y.R.W. is supported by Mechanism of Parasitism Training Grant (T32 AI007511). We thank M. Gelb (University of Washington) for Pla2g2d−/− mice.Peer reviewe

    Plitidepsin has a positive therapeutic index in adult patients with COVID-19 requiring hospitalization

    Get PDF
    Plitidepsin is a marine-derived cyclic-peptide that inhibits SARS-CoV-2 replication at low nanomolar concentrations by the targeting of host protein eEF1A (eukaryotic translation-elongation-factor-1A). We evaluated a model of intervention with plitidepsin in hospitalized COVID-19 adult patients where three doses were assessed (1.5, 2 and 2.5 mg/day for 3 days, as a 90-minute intravenous infusion) in 45 patients (15 per dose-cohort). Treatment was well tolerated, with only two Grade 3 treatment-related adverse events observed (hypersensitivity and diarrhea). The discharge rates by Days 8 and 15 were 56.8% and 81.8%, respectively, with data sustaining dose-effect. A mean 4.2 log10 viral load reduction was attained by Day 15. Improvement in inflammation markers was also noted in a seemingly dose-dependent manner. These results suggest that plitidepsin impacts the outcome of patients with COVID-19.This study has been funded by Pharmamar, S.A. (Madrid, Spain). This work was supported by grants from the Government of Spain (PIE_INTRAMURAL_ LINEA 1 - 202020E079; PIE_INTRAMURAL_CSIC-202020E043). The research of CBIG consortium (constituted by IRTA-CReSA, BSC, & IrsiCaixa) is supported by Grifols pharmaceutical. We also acknowledge the crowdfunding initiative #Yomecorono (https://www.yomecorono.com). N.I.U. has non-restrictive funding from PharmaMar to study the antiviral effect of Plitidepsin. N.J.K. was funded by grants from the National Institutes of Health (P50AI150476, U19AI135990, U19AI135972, R01AI143292, R01AI120694, and P01AI063302); by the Excellence in Research Award (ERA) from the Laboratory for Genomics Research (LGR), a collaboration between UCSF, UCB, and GSK (#133122P); by the Roddenberry Foundation, and gifts from QCRG philanthropic donors. This work was supported by the Defense Advanced Research Projects Agency (DARPA) under Cooperative Agreement #HR0011-19-2-0020. The views, opinions, and/or findings contained in this material are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. This research was partly funded by CRIP (Center for Research for Influenza Pathogenesis), a NIAID supported Center of Excellence for Influenza Research and Surveillance (CEIRS, contract # HHSN272201400008C), by DARPA grant HR0011-19-2-0020, by supplements to NIAID grants U19AI142733, U19AI135972 and DoD grant W81XWH-20-1-0270, and by the generous support of the JPB Foundation, the Open Philanthropy Project (research grant 2020-215611 (5384)), and anonymous donors to AG-S. S.Y. received funding from a Swiss National Foundation (SNF) Early Postdoc Mobility fellowship (P2GEP3_184202).N

    Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19

    Get PDF
    Plitidepsin, a marine-derived cyclic-peptide, inhibits SARS-CoV-2 replication at nanomolar concentrations by targeting the host protein eukaryotic translation elongation factor 1A. Here, we show that plitidepsin distributes preferentially to lung over plasma, with similar potency against across several SARS-CoV-2 variants in preclinical studies. Simultaneously, in this randomized, parallel, open-label, proof-of-concept study (NCT04382066) conducted in 10 Spanish hospitals between May and November 2020, 46 adult hospitalized patients with confirmed SARS-CoV-2 infection received either 1.5 mg (n = 15), 2.0 mg (n = 16), or 2.5 mg (n = 15) plitidepsin once daily for 3 d. The primary objective was safety; viral load kinetics, mortality, need for increased respiratory support, and dose selection were secondary end points. One patient withdrew consent before starting procedures; 45 initiated treatment; one withdrew because of hypersensitivity. Two Grade 3 treatment-related adverse events were observed (hypersensitivity and diarrhea). Treatment-related adverse events affecting more than 5% of patients were nausea (42.2%), vomiting (15.6%), and diarrhea (6.7%). Mean viral load reductions from baseline were 1.35, 2.35, 3.25, and 3.85 log10 at days 4, 7, 15, and 31. Nonmechanical invasive ventilation was required in 8 of 44 evaluable patients (16.0%); six patients required intensive care support (13.6%), and three patients (6.7%) died (COVID-19-related). Plitidepsin has a favorable safety profile in patients with COVID-19.This work was supported by grants from the Government of Spain (PIE_INTRAMURAL_ LINEA 1 - 202020E079; PIE_INTRAMURAL_CSIC-202020E043). The research of CBIG consortium (constituted by IRTA-CReSA, BSC, & IrsiCaixa) is supported by Grifols pharmaceutical. We also acknowledge the crowdfunding initiative #Yomecorono (https://www.yomecorono.com). N Izquierdo-Useros has nonrestrictive funding from PharmaMar to study the antiviral effect of Plitidepsin. NJ Krogan was funded by grants from the National Institutes of Health (P50AI150476, U19AI135990, U19AI135972, R01AI143292, R01AI120694, and P01AI063302); by the Excellence in Research Award (ERA) from the Laboratory for Genomics Research (LGR), a collaboration between the University of California, San Francisco (UCSF), University of California, Berkley (UCB), and GlaxoSmithKline (GSK) (#133122P); by the Roddenberry Foundation, and gifts from QCRG philanthropic donors. This work was supported by the Defense Advanced Research Projects Agency (DARPA) under Cooperative Agreement #HR0011-19-2-0020. The views, opinions, and/or findings contained in this material are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. This research was partly funded by Center for Research for Influenza Pathogenesis and Transmission (CRIPT), a National Institute of Allergy and Infectious Diseases (NIAID) supported Center of Excellence for Influenza Research and Response (CEIRS, contract # 75N93021C00014), by DARPA grant HR0011-19-2-0020, by supplements to NIAID grants U19AI142733, U19AI135972, and DoD grant W81XWH-20-1-0270, and by the generous support of the JPB Foundation, the Open Philanthropy Project (research grant 2020-215611 (5384)), and anonymous donors to A García-Sastre. S Yildiz received funding from a Swiss National Foundation Early Postdoc Mobility fellowship (P2GEP3_184202).Peer reviewe

    Novedades en vacunas

    No full text
    El informe está disponible en DIGITAL.CSIC: Una visión global de la pandemia COVID-19: qué sabemos y qué estamos investigando desde el CSIC, http://dx.doi.org/10.20350/digitalCSIC/12596. Victoria Moreno, Vicepresidencia Adjunta de Áreas Científico-Técnicas, coordinadora del informe.Consulta la web pública de la PTI Salud Global para conocer más noticias y novedades de la actividad de nuestros investigadores en la lucha contra la pandemia provocada por la COVID-19. Y si tienes cualquier consulta , puedes hacérnosla llegar a través del email: [email protected] PRÓXIMAMENTENewsletter PTI Salud Global/Global Health Cov19: en esta sección se destacan las novedades mediante las que se actualiza el informe en el que los científicos del CSIC analizan los aspectos clave de la COVID-19 .Peer reviewe

    Análisis funcional de seis ORFs de Saccharomyces cerevisiae implicación de YDL100c en la homeostasis de metales

    Full text link
    Tesis doctoral inédita leida en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 11-05-200

    Novel Human Pathogenic Coronavirus: SARS-CoV-2

    Get PDF
    The new human coronavirus that emerged in Wuhan, Central China, in December 2019, has been named SARS-CoV-2 by the International Coronavirus Study Group. This coronavirus (CoV) that has already been extended to 171 countries, has a sequence identity higher than 80% with the SARS-CoV that emerged in Guandong province of South East China in 2002. This novel virus SARS-CoV-2 is causing a pandemic, certainly the most important one in the recent decades, as it has already affected 491,623 people (as of March 26th, 2020; source: John Hopkins University, Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering), of which 22,169 have died in around four months. During the first phase of the pandemic 80% of these cases (81,054) took place in China, but now European countries, especially Italy, Spain and Germany, and also USA and Iran, are taking the lead in the list of new infected people per day.Peer reviewe

    Ácidos nucleicos que codifican para vacunas contra el virus del síndrome reproductivo y respiratorio porcino (PRRSV)

    Get PDF
    La presente invención se refiere a ácidos nucleicos que comprenden: secuencias de un virus de la gastroenteritis transmisible competente para la replicación (TGEV) y una secuencia que codifica para por 5 lo menos un epítopo neutralizante de ORF5 del virus del síndrome reproductivo y respiratorio porcino (PRRSV), incluyendo dicha secuencia un residuo de formación de puente disulfuro y habiéndose modificado para desactivar los sitios de glicosilación que interfieren en la inducción de anticuerpos.Peer reviewedConsejo Superior de Investigaciones Científicas (España), FORT DODGE VETERINARIA SAT3 Traducción de patente europe
    corecore