35 research outputs found

    Strong Conscious Cues Suppress Preferential Gaze Allocation to Unconscious Cues

    Get PDF
    Visual attention allows relevant information to be selected for further processing. Both conscious and unconscious visual stimuli can bias attentional allocation, but how these two types of visual information interact to guide attention remains unclear. In this study, we explored attentional allocation during a motion discrimination task with varied motion strength and unconscious associations between stimuli and cues. Participants were instructed to report the motion direction of two colored patches of dots. Unbeknown to participants, dot colors were sometimes informative of the correct response. We found that subjects learnt the associations between colors and motion direction but failed to report this association using the questionnaire filled at the end of the experiment, confirming that learning remained unconscious. The eye movement analyses revealed that allocation of attention to unconscious sources of information occurred mostly when motion coherence was low, indicating that unconscious cues influence attentional allocation only in the absence of strong conscious cues. All in all, our results reveal that conscious and unconscious sources of information interact with each other to influence attentional allocation and suggest a selection process that weights cues in proportion to their reliability

    Eye pupil signals information gain

    No full text
    International audienc

    Learning and forgetting using reinforced Bayesian change detection.

    No full text
    Agents living in volatile environments must be able to detect changes in contingencies while refraining to adapt to unexpected events that are caused by noise. In Reinforcement Learning (RL) frameworks, this requires learning rates that adapt to past reliability of the model. The observation that behavioural flexibility in animals tends to decrease following prolonged training in stable environment provides experimental evidence for such adaptive learning rates. However, in classical RL models, learning rate is either fixed or scheduled and can thus not adapt dynamically to environmental changes. Here, we propose a new Bayesian learning model, using variational inference, that achieves adaptive change detection by the use of Stabilized Forgetting, updating its current belief based on a mixture of fixed, initial priors and previous posterior beliefs. The weight given to these two sources is optimized alongside the other parameters, allowing the model to adapt dynamically to changes in environmental volatility and to unexpected observations. This approach is used to implement the "critic" of an actor-critic RL model, while the actor samples the resulting value distributions to choose which action to undertake. We show that our model can emulate different adaptation strategies to contingency changes, depending on its prior assumptions of environmental stability, and that model parameters can be fit to real data with high accuracy. The model also exhibits trade-offs between flexibility and computational costs that mirror those observed in real data. Overall, the proposed method provides a general framework to study learning flexibility and decision making in RL contexts

    Information Rate in Humans during Visuomotor Tracking

    No full text
    Previous investigations concluded that the human brain’s information processing rate remains fundamentally constant, irrespective of task demands. However, their conclusion rested in analyses of simple discrete-choice tasks. The present contribution recasts the question of human information rate within the context of visuomotor tasks, which provides a more ecologically relevant arena, albeit a more complex one. We argue that, while predictable aspects of inputs can be encoded virtually free of charge, real-time information transfer should be identified with the processing of surprises. We formalise this intuition by deriving from first principles a decomposition of the total information shared by inputs and outputs into a feedforward, predictive component and a feedback, error-correcting component. We find that the information measured by the feedback component, a proxy for the brain’s information processing rate, scales with the difficulty of the task at hand, in agreement with cost-benefit models of cognitive effort

    An information-theoretic perspective on the costs of cognition

    No full text
    International audienc

    Primary motor cortex contributes to the implementation of implicit value-based rules during motor decisions.

    No full text
    In the present study, we investigated the functional contribution of the human primary motor cortex (M1) to motor decisions. Continuous theta burst stimulation (cTBS) was used to alter M1 activity while participants performed a decision-making task in which the reward associated with the subjects' responses (right hand finger movements) depended on explicit and implicit value-based rules. Subjects performed the task over two consecutive days and cTBS occurred in the middle of Day 2, once the subjects were just about to implement implicit rules, in addition to the explicit instructions, to choose their responses, as evident in the control group (cTBS over the right somatosensory cortex). Interestingly, cTBS over the left M1 prevented subjects from implementing the implicit value-based rule while its implementation was enhanced in the group receiving cTBS over the right M1. Hence, cTBS had opposite effects depending on whether it was applied on the contralateral or ipsilateral M1. The use of the explicit value-based rule was unaffected by cTBS in the three groups of subject. Overall, the present study provides evidence for a functional contribution of M1 to the implementation of freshly acquired implicit rules, possibly through its involvement in a cortico-subcortical network controlling value-based motor decisions

    Covert shifts of attention during numerical comparison revealed by pupil light response

    No full text
    The pupil light response is more than a pure reflexive mechanism reacting to the amount of light entering the eye. It also reacts to the luminance of objects lying in the visual periphery, revealing the locus of covert attention. Here, we used this response to study the spatial coding of numbers. Participants fixated the middle of a screen whose left and right parts were dark or bright, and variations in pupil size were recorded during auditory number comparison. The results showed that small numbers accentuated pupil dilation when the darker part of the screen was on the left, while large numbers accentuated pupil dilation when the darker part was on the right. This provides evidence for covert attention shifts on a left-to-right oriented mental spatial representation. From a general perspective, it shows that the pupillary response to light is subject to modulation from spatial attention mechanisms operating on mental contents

    Non-parametric algorithm to isolate chunks in response sequences

    Get PDF
    Chunking consists in grouping items of a sequence into small clusters, named chunks, with the assumed goal of lessening working memory load. Despite extensive research, the current methods used to detect chunks, and to identify different chunking strategies, remain discordant and difficult to implement. Here, we propose a simple and reliable method to identify chunks in a sequence and to determine their stability across blocks.This algorithm is based on a ranking method and its major novelty is that it provides concomitantly both the features of individual chunk in a given sequence, and an overall index that quantifies the chunking pattern consistency across sequences. The analysis of simulated data confirmed the validity of our method in different conditions of noise, chunk lengths and chunk numbers; moreover, we found that this algorithm was particularly efficient in the noise range observed in real data, provided that at least 4 sequence repetitions were included in each experimental block. Furthermore, we applied this algorithm to actual reaction time series gathered from 3 published experiments and were able to confirm the findings obtained in the original reports. In conclusion, this novel algorithm is easy to implement, is robust to outliers and provides concurrent and reliable estimation of chunk position and chunking dynamics, making it useful to study both sequence-specific and general chunking effects.The algorithm is available at: https://github.com/artipago/Non-parametric-algorithm-to-isolate-chunks-in-response-sequence
    corecore