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Visual attention allows relevant information to be selected for further processing. Both
conscious and unconscious visual stimuli can bias attentional allocation, but how these
two types of visual information interact to guide attention remains unclear. In this study,
we explored attentional allocation during a motion discrimination task with varied motion
strength and unconscious associations between stimuli and cues. Participants were
instructed to report the motion direction of two colored patches of dots. Unbeknown to
participants, dot colors were sometimes informative of the correct response. We found
that subjects learnt the associations between colors and motion direction but failed
to report this association using the questionnaire filled at the end of the experiment,
confirming that learning remained unconscious. The eye movement analyses revealed
that allocation of attention to unconscious sources of information occurred mostly
when motion coherence was low, indicating that unconscious cues influence attentional
allocation only in the absence of strong conscious cues. All in all, our results reveal that
conscious and unconscious sources of information interact with each other to influence
attentional allocation and suggest a selection process that weights cues in proportion to
their reliability.
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INTRODUCTION

Attention is a mechanism for allocating cognitive resources to relevant stimuli (Desimone and
Duncan, 1995). The highest priority for allocating attention is thought to be associated to the
stimulus that maximizes expected information gain (i.e., provide the most information given the
stimuli and its context; Summerfield and Egner, 2009; Manohar and Husain, 2013; Vossel et al.,
2014). Attentional selection can be driven by stimulus- and context-specific features that make
a given visual object stand out from its surrounding (Itti, 2005). This type of attention has been
coined stimulus-driven, exogenous or bottom-up attention (Filali-Sadouk et al., 2010). On the
other hand, selective attention can be driven to stimuli, features, or spatial location which are
especially relevant with respect to the task that we are performing, an instance called goal-directed
or top-down attention (Baluch and Itti, 2011; Henderson and Hayes, 2017).

Most studies of goal-directed attention have focused on attentional allocation to conscious
cues (e.g., blue stimuli when looking for a blue flower). However, the influence of unconscious
processing on visual attention remains debated. Despite persistent skepticism regarding the
existence of unconscious processes (Shanks and St. John, 1994; Vadillo et al., 2016), many studies
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have reported evidence of unconscious processing in perceptual
decision making (Greenwald et al., 1995; Peremen and Lamy,
2014; Alamia et al., 2016), motor learning (Cleeremans, 1993;
Destrebecqz et al., 2005; Clerget et al., 2012) and dynamic system
control (Berry and Broadbent, 1988). Regarding its interaction
with attentional mechanisms, a recent study from Zhao et al.
(2013) provided evidence in support of preferential attentional
allocation to unconscious cues by showing that reaction times
(RTs) were faster when task stimuli were presented within a
structured stream of stimuli. In line with these results, in a
previous study from our group, we also showed that temporal
statistical regularities affect overt attention (i.e., eye movements):
participants were attendingmore frequently the predictable onset
of a novel target. Interestingly, we found this effect exclusively
when the predictability was task-relevant (Alamia and Zénon,
2016 ). Another instance of unconscious influence on attentional
allocation can be found in contextual cueing (Chun and Jiang,
1998; Chun, 2000), in which participants perform a visual search
between two sets of stimuli having two different colors, only one
of which includes the target. Unbeknown to participants, target
location is paired with the spatial configurations of either one
or the other set of stimuli. Even though the truly unconscious
nature in this paradigm has been called into question (Smyth and
Shanks, 2008), the results show that participants implicitly learn
the rule, and bias their eye movements toward the portion of
space where the target is more likely to appear (Jiang and Chun,
2001). In line with these results, studies based on subliminal
spatial cues attained similar conclusions (Mulckhuyse et al.,
2007; Mulckhuyse and Theeuwes, 2010). Thus, in the visual
domain, evidence seems to suggest that attention is affected
by predictability, even though previous studies have not tested
subjects’ awareness thoroughly (Shanks and St. John, 1994;
Newell and Shanks, 2014).

In ecological scenarios, conscious and unconscious sources
of information are often mingled together, but how attentional
allocation to unconscious cues interact with the amount of
conscious information in the stimulus (i.e., signal strength)
has not been investigated thoroughly so far. Here, we address
this question aiming specifically at: (1) confirming that overt
attentional exploration is influenced by unconscious sources
of information, using a paradigm that addresses the main
criticisms formulated against previous studies of unconscious
processing; and (2) testing whether and how conscious and
unconscious information interact when influencing attention.
We explored these questions by exploiting an experimental
design that leads to robust unconscious learning, in which color
information biases decisions in a motion discrimination task and
in which the awareness of the association has been thoroughly
tested (Alamia et al., 2016). We manipulated the strength of
the conscious signal (i.e., how easy it is to perceive the dots’
motion) to investigate how the reliability of conscious cues
affects the weight of unconscious sources of information on
attentional allocation. We hypothesized that: (1) eye movements
are influenced by unconscious cues, in agreement with previous
findings; and (2) reliable conscious information should decrease
the influence of unconscious cues on task performance and
attentional allocation.

MATERIALS AND METHODS

Participants
Twenty-two healthy participants (15 females, mean age = 23.17,
std = 1.68) took part in this experiment, receiving monetary
compensation for their participation. All of them reported
normal or corrected-to-normal vision. Two participants were
discarded from the analyses because, during the debriefing at
the end of the experiment, they could explicitly verbalize the
association between color and motion. Therefore, all subsequent
analyses were performed on 20 participants (the target sample
size was estimated from previous experiments using similar
task; Alamia et al., 2016). All the participants signed a written
informed consent before the experiment. The experiment was
approved by the local Ethics committee of the Université
Catholique de Louvain and was carried out in accordance with
the Declaration of Helsinki.

Experimental Design
Participants were comfortably made to sit, with the head placed
on a chin rest, at a distance of 58 cm from the screen. Eye
movements and blinks were recorded with an Eyelink© 1,000 +
eye tracker (SR Research Ltd., Kanata, ON, Canada; sample rate
of 500 Hz). The experiment was implemented in Matlab 7.5 (The
MathWorks, Natick, MA, USA), using the version 3.0.9 of the
Psychotoolbox (Brainard, 1997). The experiment lasted around
45 min, and it was composed of 14 blocks, each lasting 56 trials.
Each trial consisted of three parts (Figure 1): at first a fixation
cross was displayed until the participants maintained fixation
continuously for 600 ms; then two motion patches (see below)
were presented until participants provided an answer, but no
longer than 2,000 ms; finally, if the participant failed to provide
an answer during the response period, an additional 1,000 ms
blank display was presented to allow more time to respond.

An auditory feedback was provided to inform the participants
of the accuracy of their response. The stimuli consisted of
two patches of dots, each having a diameter of 6◦ and located
at two of the four pseudo-randomly selected corners of the
screen, 20◦ from the center (center to center distance). The
motion of the two patches of dots was either rightward
or leftward, and both patches always had the same motion
direction. Participants were instructed to fixate the cross at
the beginning, and then visually explore the two patches to
report their motion direction. The patches could have two
different coherence levels: 25% and 60%. The coherence level
of a patch reflects the percentage of dots moving towards the
main direction of motion (i.e., left/rightward). The motion
direction of the remaining dots was selected at random. The
lower the coherence the more difficult it is to discriminate the
motion direction (Gold et al., 2008). Thus, there were three
types of trials: easy (both patches at 60% coherence), difficult
(both patches having 25% coherence) and mixed (one patch
60% and the other 25%). The rationale for having two levels
of coherence was two-fold. On the one hand, it was used to
investigate the interaction between conscious and unconscious
sources of information on attentional allocation. On the other

Frontiers in Human Neuroscience | www.frontiersin.org 2 October 2018 | Volume 12 | Article 427

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Alamia et al. Unconscious Learning and Eye Movements

FIGURE 1 | Trial example showing the three parts: fixation cross, stimulus presentation and response time.

hand, it was also used as a way to favor visual exploration,
since in pilot studies that did not include this manipulation,
we found that subjects tended to fixate stimuli on the basis
of their spatial location. In addition to coherence, the overall
difficulty level of the task was tuned subject by subject in the
first six blocks by changing the lifetime of the dots of both
patches. Dot lifetime corresponds to the number of frames each
dot is displayed before disappearing: the longer the lifetime,
the easier it is to perceive the motion. The possible lifetime
values were 15, 6, 4, 3 and 2, chosen on the basis of pilot
studies performed on a different set of participants (given
100 Hz refresh rate, each frame lasts 10 ms and a lifetime of
two corresponds to 20 ms). On the first training block, the
lifetime of both patches was 15, and it was decreased by one
level in subsequent blocks provided the participants’ average
performance of the last block was above 70%. This approach
allowed us to adjust motion discrimination difficulty to each
participant, while concomitantly training them on the task. All
except one participant reached the shortest lifetime (i.e., lifetime
of 2) before the 7th block. Starting from the 7th block, the
lifetime remained unchanged throughout the whole experiment.
All the dots of each patch were of the same color, with three
possible colors (i.e., red, blue and green). Unbeknownst to
the participants, starting from the 7th block, one color was
always associated to the rightward direction, another color to
the leftward direction and the last color was uninformative of
the motion direction of the dots. This association was pseudo
randomized between participants. Briefly, two types of trials
were possible: both patches shared the same color, or they had

different colors. The color associated with leftward motion and
the one associated with rightward motion were never presented
together (the color-motion association was 100% valid). The
frequency of occurrence of the colors was balanced during the
whole experiment. Moreover, in 20% of the trials (11 out of 56 in
a block chosen randomly and independently of the conditions)
participants were asked to report one of the patch colors, forcing
them to pay attention to the colors and providing us with an
additional measure of the attended color. When the patches
had different colors, both answers were considered as correct.
All the possible types of trials are summarized in Table 1 (see
in ‘‘Data Analysis’’ section). At the end of the experiment,
participants responded to a de-briefing questionnaire composed
of four questions: first, whether one motion direction was
easier to discriminate than the other; second, whether one of
the four positions was attended more than the others; third,
whether the motion was easier to perceive with one of the three
colors; and fourth, whether they had remarked an association
between colors and motion. In case of positive answer to this
last question, they were asked to report the nature of the
association.

Data Analysis
During the whole experiment, we recorded eye position,
participants’ responses and RTs. Two participants out of
22 reported the correct color-motion association in the final
questionnaire, and thus were excluded from further analyses.

Statistical analyses consisted of Bayesian ANOVA, performed
in JASP (Love et al., 2015): all the Bayes Factors, if not otherwise

TABLE 1 | All possible conditions (n represents the number of trials per condition per block).

Patch 1 Patch 2

Coherence Color Coherence Color

Condition 1 (n = 4) 60% (easy) predictive 60% (easy) non-predictive
Condition 2 (n = 4) 25% (difficult) predictive 25% (difficult) non-predictive
Condition 3 (n = 16) 60% (easy) predictive 25% (difficult) predictive
Condition 4 (n = 4) 60% (easy) non-predictive 25% (difficult) non-predictive
Condition 5 (n = 4) 60% (easy) predictive 25% (difficult) non-predictive
Condition 6 (n = 4) 25% (difficult) predictive 60% (easy) non-predictive
Condition 7 (n = 20) Same as patch 2 Same as patch 1

Only the first four conditions have been considered for the eye-movement analyses, whereas condition 7—in which the two patches were identical—was used in the first
behavioral analysis. Note that condition 7 is actually composed of four sub-conditions, i.e., when both patches are: easy-predictive, easy-unpredictive, difficult-predictive
or difficult-unpredictive. Each sub-condition consists of five trials per block.

Frontiers in Human Neuroscience | www.frontiersin.org 3 October 2018 | Volume 12 | Article 427

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Alamia et al. Unconscious Learning and Eye Movements

specified, refer to the alternative hypothesis, and are reported as
BF10. Practically, a BF between 0.3 and 3 advocates for a lack
of effect, whereas BF below 0.3 or above 3 suggests evidence
in favor of the null or alternative hypothesis, respectively. The
larger the BF, the stronger the evidence in favor of the alternative
hypothesis (Bernardo and Smith, 2001; Masson, 2011). All other
analyses, including eye movement preprocessing and feature
extraction were performed in Matlab7.5 (The MathWorks,
Natick, MA, USA).

Accuracy and RT Analysis
We performed behavioral and eye-movements analyses starting
from the 7th block, i.e., the block in which the color-motion
association was introduced in the experiment. Regarding the
behavioral part, we tested two Bayesian ANOVAs considering
either the accuracy (model I) or RT (model II) as dependent
variables: the accuracy was modeled as a binary variable,
whereas the RT was modeled as Gaussian. The independent
variables considered were: PREDICTABILITY (a categorical
variable modeling whether the color was informative or not),
BLOCKS (categorical variable from 7 to 14), DIFFICULTY
(categorical variable modeling whether the trial was difficult
or easy) and all their interactions. Initially, we analyzed only
trials in which the patches had the same color and the same
coherence level, in order to remove all confounds induced
by eye movements during patch selection (condition 7 in
Table 1). In a second analysis, to study how selective attention
affected accuracy and RT, we performed two additional Bayesian
ANOVAs, one on accuracy (model III) and one on RT (model
IV), considering the patch on which attention was allocated.
We determined attention allocation as the distance between the
eye position and the patches at the time of the participant’s
response (see ‘‘Eye Movement Analysis’’ section below). Trials
in which participants moved back and forth between the patches
were excluded from this analysis (∼15% of the trials). As in
the previous analysis, we considered PREDICTABILITY and
DIFFICULTY of the attended patch as factors. In this analysis
and in the subsequent analyses regarding eye movements, we
focused on two sub-categories of trials in order to simplify the
interpretation of the findings (see Table 1): the first category of
trials (conditions 1 and 2 in Table 1) included patches with the
same coherence but different predictability levels (one predictive
and one non-predictive). In the second category, patches had the
same predictability in the color-motion association but different
coherence levels (conditions 3 and 4 in Table 1). This approach
allowed us to investigate specifically the effects of the color-
motion association (condition 1 and 2), independently from the
effect of difficulty (i.e., coherence levels, condition 3 and 4)
on attentional allocation. We did not investigate further the
remaining conditions 5 and 6 because it would have been
challenging to properly disentangle the effects of predictability
from the effect of patch coherence.

Eye Movement Analysis
We first removed the blinks (automatically detected by the
Eyelink© algorithm) bymeans of linear interpolation. Afterward,
we determined attentional allocation trial by trial, on the

basis of which patch was attended by the participants when
they provided the answer: first we computed the distance
between the eye position and each patch, then we normalized
these distances by their sum, and finally we attributed a
positive value in the attentional allocation binary variable to
the patch with a normalized distance lower than 0.4. We then
compared the percentage of trials in which the predictive or
non-predictive patches were attended (model Va, conditions
1 and 2) and the easy or the difficult one was attended (model
Vb, conditions 3 and 4). In this analysis, we included only
trials in which participants attended a single patch (around
85% of all the trials). In a second analysis, we focused on
the remaining portion of trials in which participants switched
their attention from one patch to the other (around 15% of
the trials): we compared the percentage of time in which
they switched from predictive to non-predictive color and
vice versa (model VIa, conditions 1 and 2) and from easy
to difficult patches and vice versa (model VIb, conditions
3 and 4). Both models V and VI were implemented by
means of Bayesian ANOVA. Finally, as an indirect measure of
attention, we tested whether participants reportedmore often the
predictive or the non-predictive color, when asked, at the end
of each trial, which colors had been presented (Bayesian paired
t-test).

RESULTS

Behavioral Analysis
In the first model (model I), we tested whether accuracy was
affected by the PREDICTABILITY of the color, the BLOCK
and the DIFFICULTY factors. This analysis was restricted
to trials in which both patches had the same color and
coherence level (i.e., condition 7, see Table 1). As expected,
we found a very strong effect of the factor DIFFICULTY
(BF10 �100 very strong evidence), indicating that participants
were better at discriminating the motion direction of the
patches when both had a coherence of 60%, than when both
had 25% coherence (Figure 2A). Interestingly, we found also
an effect of the factor PREDICTABILITY (BF10 = 17.86,
strong evidence), with better performance for predictive than
non-predictive colors, confirming that participants learned the
implicit association between color and motion. No interaction
between PREDICTABILITY and DIFFICULTY was found
(BFinclusion < 1). We found a strong negative results of the
factor BLOCK (BF01 = 42.08) but all related interactions lacked
sensitivity (all 0.3 < BF10 < 3).

Regarding RT (model II), we found a similar significant
effect of DIFFICULTY (BF10 � 100 very strong evidence),
indicating faster responses for easier patches (i.e., patches
with 60% coherence), and an effect of PREDICTABILITY
(BF10 � 10 strong evidence). All the other factors or interactions,
were far from reaching significance (all 0.3 < BF10 < 3).

The second behavioral analysis aimed at investigating
how accuracy and RT changed as a function of attentional
allocation (Figure 2B). Here, we included only trials in
which coherence was identical in both stimuli, such that
the patches differed only in color (i.e., conditions 1 and 2,
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FIGURE 2 | (A) Averaged accuracy and reaction time (RT) results for the easy
(solid lines) and difficult (dashed lines) trials, and for predictive (red) and
non-predictive (blue) trials. All data are from trials in which the patches are
identical (condition 7—see Table 1). (B) Averaged accuracy and RT results
according to which patch was attended by participants (same color code as in
“a”) in trial from condition 1 and condition 2 (see Table 1). In all panels, error
bars are standard errors, and asterisks indicate significant difference
(p < 0.05).

see Table 1). We found that the difficulty level of the
attended patch affected performance (Model III; BF10 � 100,
very strong evidence), but we found no main effect of
the ATTENDEND_PREDICTABILITY factor (BF10 = 1.2).
Nevertheless, we found positive evidence of an interaction
between DIFFICULTY and ATTENDEND_PREDICTABILITY
(BF10 = 3.425), contrary to the results from condition 7
(i.e., both patches are identical—no interaction). This analysis
reveals that participants were exploiting the predictability when
one patch but not the other was predictive, and specifically
when both patches were difficult (post hoc comparison between
predictive and non-predictive patches in the difficult condition:
BF10 = 3.824, in the easy condition BF10 = 0.410). Regarding
the RT (model IV), we also found a significant impact of
the factor DIFFICULTY (BF10 � 100, very strong evidence)
but no other effects (all 0.3 < BF10 < 3). All in all, these
analyses show that participants’ accuracy was higher when they
attended the patch whose color conveyed information about
motion direction when the motion of both patches was harder
to perceive.

Questionnaire Analysis
We provided a questionnaire with four questions at the end
of the experiment, with the purpose of assessing the awareness
of the associations. The last question asked directly whether
participants had remarked a color-motion association, and in

case of a positive answer they were invited to specify which one.
Only 2 out of 22 participants were able to provide the correct
association (the remaining 20 participants responded negatively
and did not provide any associations). The precedent three
questions about general biases (see ‘‘Materials and Methods’’
section for details) were meant to keep the participants unaware
of the true purpose of the questionnaire, thus not implying the
existence of the association. The responses to these previous
questions did not reveal any specific bias in the participants
(specifically, five and three participants reported respectively
rightward and leftward motion direction as easier to perceive;
and three and two participants reported respectively upper and
lower positions as easier to discriminate motion directions).

Eye Movement Analysis
For the eye movement analysis, we considered as binary
dependent variable the proportion of trials in which participants
attended the predictive or the non-predictive patch (Table 1:
conditions 1 and 2; model Va), when both patches were
either easy or difficult (factors PREDICTABILITY and
DIFFICULTY respectively). As shown in Figure 3A, we found
a significant result for both factors (DIFFICULTY BF10 = 11.48,
PREDICTABILITY BF10 = 18.37, positive evidence), and a
strong interaction between the two factors (BF10 = 53.61, strong
evidence). A post hoc analysis revealed a significant difference
between predictable and non-predictable colors in the difficult
(BF> 100) but not in the easy condition (BF = 1.433), suggesting
that participants were looking more at the informative patch
when the coherence of both patches was lower (i.e., 25%), in
agreement with the results of the previous analysis (model
III).Not surprisingly, in the condition in which one of the
patches was easy and the other one difficult (Table 1: conditions
3 and 4; model Vb), we found a very significant effect of the
factor DIFFICULTY (BF10 � 100).

Figure 3B shows the proportion of trials in which participants
made a saccade from one patch to the other (around 15%
of trials, with three participants having a percentage closer
to 40% and all the other participants <10%). We found a
positive effect of PREDICTABILITY (left part of the Figure;
BF10 = 5.11, positive evidence), irrespective of the difficulty
level of both patches (Table 1: conditions 1 and 2; model VIa).
Similarly, in conditions 3 and 4 (model VIb), we found a
significant effect of the difficulty level (right part of the Figure;
BF10 > 100).

Finally, we investigated which color was reported more
frequently when participants were asked to report the patch’s
color in 10% of the trials. Importantly, in these trials one patch
had a predictive color and the other patch a non-predictive
one, so it provided us with an indirect measure of attentional
allocation. Considering only trials in which participants reported
a color that had actually been displayed (accuracy for this task
was >95%), we found that participants reported more frequently
the predictive than the non-predictive color (Bayesian paired
t-test of choosing the predictive color against chance level:
BF > 40, very strong evidence), as shown in Figure 3C, in
agreement with the previous analyses that suggested a bias of
attention toward the informative colors.
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FIGURE 3 | (A) The average percentage of trials in which participants looked at predictive or non-predictive patches (conditions 1 and 2—see Table 1), respectively
red and blue (left part); and high or low coherence level (conditions 3 and 4), respectively solid and dashed lines (right part). (B) Average percentage of trials in which
participants switched attention from one patch to the other (left column: from predictive to non-predictive and vice versa –conditions 1 and 2; right column: from low
to high coherence level and vice versa—conditions 3 and 4). (C) Average percentage of time participants reported the predictive (red) or non-predictive (blue) color. In
all the panels, error bars are standard errors, and asterisks indicate significant difference (p < 0.05).

DISCUSSION

In this study, we investigated the effect of unconscious learning
on visual attention by means of eye movements, and how
unconscious biases are influenced by conscious, task-relevant

information (i.e., signal strength). Participants were instructed to
report the motion direction of two patches of variable coherence
and color: unbeknown to them, two out of three colors were
100% informative of the correct response. Participants failed to
notice this association consciously, but nevertheless exploited the
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color information to perform the task, replicating our previous
findings (Alamia et al., 2016). The question we addressed
in the current study was whether unconscious knowledge
of the color-motion association affects eye movements, and
how this influence interacts with the strength of the stimuli
(i.e., coherence of the patch). As expected, we found that the
color cue affected behavioral measures (RT and accuracy), and
that participants were attending more frequently the patches
exhibiting the predictive colors, despite not being consciously
aware of the associations. Importantly, this pattern occurred
more frequently during difficult trials, that is when the motion
direction was harder to perceive, thus revealing an interaction
between conscious and unconscious features of the stimuli in
biasing attentional allocation.

One crucial point of this study is the measure of awareness
of the association: we rely on a four-item questionnaire, in
which the last question directly probes the knowledge of the
color-motion association. In our previous study (Alamia et al.,
2016), we investigated awareness of the same association in a
simpler design, with only one patch per trial and fixed coherence.
We showed that participants who failed the questionnaire also
failed more sensitive tests (i.e., generative and familiarity tests-
Derosiere et al., 2017). This indicates that -in this task- the
questionnaire provides a reliable measure of awareness, and that
other tests would have reached similar conclusions. Moreover,
it is legitimate to assume that participants whom are aware
of the color-motion associations would base their choices to a
large extent on color, leading to different pattern of results, with
drastic differences between conditions (as reported in Alamia
et al., 2016). Yet, we did not observe such effects in our results.
Altogether, these considerations provide good evidence in favor
of truly unconscious bias of color on decisions.

Several previous studies have investigated the relationship
between attention and unconscious learning. On the one hand,
recent studies have investigated how attentional allocation is
affected by unconscious sources of information. One study from
Zhao et al. (2013) investigated the relationship between statistical
learning and visual attention (i.e., spatial and feature-selection).
In a series of experiments, one out of four locations displayed a
statistically structured sequence of abstract shapes, whereas the
order was random in the other locations. They showed that RTs
of an orthogonal task were decreased in the location exhibiting
statistical regularities, thus suggesting that covert attention was
affected by regularities even when these were not relevant for
performing the task. Interestingly, another study about visual
selection suggested that attention was driven away from the
location where distractors were more likely to appear (Wang
and Theeuwes, 2018). It is note worthy, however, that in that
study some participants—yet included in the analysis—reported
to have explicitly noticed the regularity.

On the other hand, several studies have also investigated
the reciprocal relationship: how attentional allocation affects
the implicit learning of statistical regularities. Regarding visual
statistical learning, a seminal study from Turk-Browne and
colleagues (Turk-browne et al., 2005) has revealed that selective
attention is necessary to implicitly learn the regularities of a
stream of stimuli: in his study the unattended stimuli were

not learnt by the participants. Conversely, a recent study
failed to replicate these findings, showing that the unattended
regularities are learnt as well as the attended ones (Musz
et al., 2015). Besides visual statistical learning, the impact of
attention on unconscious learning has been also investigated in
the context of implicit sequence learning. In a serial RT task
(SRTT), the most commonly used paradigm to study implicit
sequence learning, participants learn a sequence of responses
implicitly, and these sequences can be either deterministic,
probabilistic or random. In the first two cases (i.e., when
the sequence is predictable) participants perform better than
in the random case, even when they are not aware of the
predictability (Destrebecqz and Cleeremans, 2001; Destrebecqz
et al., 2005). In a seminal study, Nissen and Bullemer (1987)
showed that the addition of a secondary orthogonal task, which
pulls participant’s attentional resources away from the main task,
impaired learning, thus indicating the crucial role of attention
in implicit learning; whereas some other authors suggested a
rather different interpretation, framing the results in terms of
interference between the first and the secondary task (Stadler,
1995), and not in terms of attentional resources. Conversely,
Cohen et al. (1990) showed no effect of a secondary task on
participants’ performance, even though further studies failed to
replicate these results (Frensch et al., 1998). Finally, the results
of Cleeremans et al. (1998) fell in between, showing lesser but
significant implicit learning in the presence of an orthogonal task.
All in all, the role of attention in implicit learning in the context
of SRTT remains disputed.

Beyond implicit learning, a few studies have investigated how
subliminal stimuli affect attentional allocation, and conversely
how subliminal stimuli are affected by visual attention.
Specifically, one study from Kanai et al. (2006) investigated
how attentional allocation affects subliminal perception. In their
task, the perception of the orientation of a grating pattern
was altered by the presentation of a previous stimulus, which
was allegedly subliminal due to continuous flash suppression.
This tilt after effect (TAE) was induced by a subliminal
stimulus (due to continuous flash suppression) at two different
locations, one of which was attended by the participants. Their
results showed a TAE with subliminal adaptors both when
participants were attending the location and when they were
not, suggesting that spatial attention does not influence low level
processing of subliminal stimuli (Kanai et al., 2006). Regarding
the effect of subliminal stimuli on attentional allocation, other
studies have showed that spatial attention can be affected by
subliminal stimuli (Mulckhuyse et al., 2010; Chou and Yeh, 2011;
Mastropasqua and Turatto, 2015).

All in all, the results from the current literature seem to
suggest that unconscious information, both subliminal and
supraliminal, can affect visual attention. However, the actual
unconscious nature of these processes has been strongly
questioned (Shanks, 2003; Smyth and Shanks, 2008; Vadillo
et al., 2016). In this regard, this study adds an important
and original contribution to the previous literature. As such,
we used a paradigm whose rules are simple to learn and in
which all relevant information is supraliminal (i.e., color and
motion coherence), thus voiding possible confounds related
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to other implicit learning paradigms (Shanks and St. John,
1994; Newell and Shanks, 2014). As discussed at length in
our previous study (Alamia et al., 2016), the simplicity of the
unconscious association ensures that participants do not exploit
alternative strategies to perform the task (as in more complex
paradigms, e.g., artificial grammars). Additionally, the usage of
supraliminal stimuli allows us to avoid the issues related to
subliminal perception, since in that domain it is difficult to
determine whether stimuli are truly unconsciously perceived or
not (Lovibond and Shanks, 2002).

The conclusion that attention is biased toward the most
informative patch is in line with our previous findings that
suggested that unconscious information bias attentional
allocation only when it is beneficial for task performance
(Alamia and Zénon, 2016). Whereas in that earlier study, we
manipulated the relevance of the unconscious information,
here we manipulated the strength of the conscious source
of information. These combined findings suggest that
attentional allocation to unconscious cues depends on top-down
mechanisms since it is modulated by high-level factors, such as
relevance and relative reliability.

Further than that, another important element of novelty
introduced in our study lays in the interaction between
unconscious and conscious sources of influence on attentional
allocation. An intriguing perspective raised by this finding is
that unconscious and conscious attentional cues are weighted
as a function of their behavioral reliability, as suggested by the
fact that attention is deployed to the most informative stimuli
primarily when both patches have low coherence (i.e., when
the task is more difficult). Importantly, the unconscious
color-motion association was as effective in the easy as in the
difficult trials, indicating that failure to allocate attention to
predictive stimuli in the high-coherence trials was not caused
merely by the fact that subjects did not use the unconscious
information in easy trials. Additionally, this interpretation
would utterly fit within a Bayesian framework, in which
cues are weighted based on the variance of their distribution
(i.e., precision, Feldman and Friston, 2010), as much as sensory

cues from differences modalities are combined based on their
reliability (Battaglia et al., 2003). However, further experiments
are required to effectively test this hypothesis.

As suggested in other studies (Beilock et al., 2002; Olivers
and Nieuwenhuis, 2005), attention and consciousness can have
different and dissociable effects on behavior, thus hinting
that these two processes potentially rely on different neuronal
mechanisms. Our results advocate in favor of the dissociation
between attention and consciousness (Koch and Tsuchiya, 2007,
2012; Tsuchiya and Koch, 2016), showing that it is possible
to have an attentional effect (i.e., eye movement) which is
driven by unconscious information: conceivably, participants are
aware of which patch they are attending at each trial, but their
choice is influenced to some extent by unconscious knowledge.
In conclusion, our study shows that unconscious processing
affects attentional allocation and eye movements in a perceptual
decision-making task.
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