387 research outputs found

    Localizations of Fast Radio Bursts on milliarcsecond scales

    Full text link
    Fast Radio Bursts (FRBs) are transient sources that emit a single radio pulse with a duration of only a few milliseconds. Since the discovery of the first FRB in 2007, tens of similar events have been detected. However, their physical origin remains unclear, and a number of scenarios even larger than the number of known FRBs has been proposed during these years. The presence of repeating bursts in FRB 121102 allowed us to perform a precise localization of the source with the Very Large Array and the European VLBI Network (EVN). Optical observations with Keck, Gemini and HST unveiled the host to be a low-metallicity star-forming dwarf galaxy located at a redshift of 0.193. The EVN results showed that the bursts are co-located (within a projected separation of <40< 40 pc) to a compact and persistent radio source with a size of <0.7< 0.7 pc inside a star-forming region. This environment resembles the ones where superluminous supernovae (SLSNe) or long gamma-ray bursts are produced. Although the nature of this persistent source and the origin of the bursts remain unknown, scenarios considering a pulsar/magnetar energizing a young SLSN, or a system with a pulsar/magnetar in the vicinity of a massive black hole are the most plausible ones to date. More recent observations have shown that the bursts from FRB 121102 are almost 100% linearly polarized at an unexpectedly high and variable Faraday rotation measure, that has been observed to date only in vicinities of massive black holes. The bursts are thus likely produced from a neutron star in such environment, although the system can still be explained by a young neutron star embedded in a highly magnetized nebula. Upcoming interferometric searches are expected to report tens of these localizations in the coming years, unveil if this source is representative of the whole population or a particular case, and dramatically boosting the field of FRBs.Comment: 11 pages, 3 figures, proceedings of the 14th European VLBI Network Symposium & Users Meeting, held on 8-11 October 2018 in Granada, Spai

    4C 02.27: what is inside a double-double radio quasar?

    Get PDF
    Recently Jamrozy et al. (2009) identified 4C 02.27 (J0935+0204) as the first possible example of a double-double radio source which is optically identified with a quasar (i.e. not a galaxy), at the redshift of z=0.649. The overall projected angular size of the radio source reaches about 1.5', with a prominent "core" component in the centre. The two opposite pairs of radio lobes might indicate two periods of episodic activity. We report on our short exploratory 1.6-GHz Very Long Baseline Interferometry (VLBI) observations of the innermost radio structure of the quasar, conducted with the electronic European VLBI Network (e-EVN) on 2009 September 30. These revealed a milliarcsecond-scale compact source which is the base of the approaching one of the two symmetric relativistic jets currently supplying the hot spots in the inner pair of the arcsecond-scale radio lobes in 4C 02.27.Comment: 4 pages, 2 figures, to appear in the proceedings of the 10th European VLBI Network Symposium (September 20-24, 2010, Manchester, UK). Proceedings of Science (http://pos.sissa.it), PoS(10th EVN Symposium)07

    LLAGN and jet-scaling probed with the EVN

    Full text link
    Accreting black holes on all mass scales (from stellar to supermassive) appear to follow a nonlinear relation between X-ray luminosity, radio luminosity and BH mass, indicating that similar physical processes drive the central engines in X-ray binaries and active galactic nuclei (AGN). However, in recent years an increasing number of BH systems have been identified that do not fit into this scheme. These outliers may be the key to understand how BH systems are powered by accretion. Here we present results from EVN observations of a sample of low-luminosity AGN (LLAGN) with known mass that have unusually high radio powers when compared with their X-ray luminosity.Comment: Presented at the 11th EVN Symposium, Bordeaux, France, 2012 October 9-12. Six pages, including a figure and a table. Final, accepted versio

    Four hot DOGs in the microwave

    Full text link
    Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of them is at high redshifts (z~2-3), at the peak epoch of star formation in the Universe. Infrared, optical, radio, and X-ray data suggest that hot DOGs contain heavily obscured, extremely luminous active galactic nuclei (AGN). This class may represent a short phase in the life of the galaxies, signifying the transition from starburst- to AGN-dominated phases. Hot DOGs are typically radio-quiet, but some of them show mJy-level emission in the radio (microwave) band. We observed four hot DOGs using the technique of very long baseline interferometry (VLBI). The 1.7-GHz observations with the European VLBI Network (EVN) revealed weak radio features in all sources. The radio is free from dust obscuration and, at such high redshifts, VLBI is sensitive only to compact structures that are characteristic of AGN activity. In two cases (WISE J0757+5113, WISE J1603+2745), the flux density of the VLBI-detected components is much smaller than the total flux density, suggesting that ~70-90 per cent of the radio emission, while still dominated by AGN, originates from angular scales larger than probed by the EVN. The source WISE J1146+4129 appears a candidate compact symmetric object, and WISE J1814+3412 shows a 5.1-kpc double structure, reminiscent of hot spots in a medium-sized symmetric object. Our observations support that AGN residing in hot DOGs may be genuine young radio sources where starburst and AGN activities coexist.Comment: 8 pages, 4 tables, 1 figure; accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    The compact radio structure of the high-redshift blazar J1430+4204 before and after a major outburst

    Full text link
    The high-redshift (z=4.72) blazar J1430+4204 produced an exceptional radio outburst in 2006. We analyzed 15-GHz radio interferometric images obtained with the Very Long Baseline Array (VLBA) before and after the outburst, to search for possible structural changes on milli-arcsecond angular scales and to determine physical parameters of the source.Comment: Proceedings of the 5th Workshop of Young Researchers in Astronomy and Astrophysics, Budapest, 2009; to be published in J. Phys.: Conf. Series (JPCS); 4 pages, 3 figure

    Four hot DOGs eaten up with the EVN

    Full text link
    Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies recently identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of the ~1000-member all-sky population should be at high redshifts (z~2-3), at the peak of star formation in the history of the Universe. This class most likely represents a short phase during galaxy merging and evolution, a transition from starburst- to AGN-dominated phases. For the first time, we observed four hot DOGs with known mJy-level radio emission using the European VLBI Network (EVN) at 1.7 GHz, in a hope to find compact radio features characteristic to AGN activity. All four target sources are detected at ~15-30 mas angular resolution, confirming the presence of an active nucleus. The sources are spatially resolved, i.e. the flux density of the VLBI-detected components is smaller than the total flux density, suggesting that a fraction of the radio emission originates from larger-scale (partly starburst-related) activity. Here we show the preliminary results of our e-EVN observations made in 2014 February, and discuss WISE J1814+3412, an object with kpc-scale symmetric radio structure, in more detail.Comment: 6 pages, 1 figure; appears in the proceedings of the 12th European VLBI Network Symposium and Users Meeting (7-10 October 2014, Cagliari, Italy), eds. A. Tarchi, M. Giroletti & L. Feretti. JREF Proceedings of Science, PoS(EVN 2014)003, http://pos.sissa.it/archive/conferences/230/003/EVN%202014_003.pd
    • …
    corecore