20 research outputs found

    Antarctic circumpolar current transport through Drake Passage: What can we learn from comparing high‐resolution model results to observations?

    Get PDF
    Uncertainty exists in the time‐mean total transport of the Antarctic Circumpolar Current (ACC), the world's strongest ocean current. The two most recent observational programs in Drake Passage, DRAKE and cDrake, yielded transports of 141 and 173.3 Sv, respectively. In this paper, we use a realistic 1/12° global ocean simulation to interpret these observational estimates and reconcile their differences. We first show that the modeled ACC transport in the upper 1,000 m is in excellent agreement with repeat shipboard acoustic Doppler current profiler (SADCP) transects and that the exponentially decaying transport profile in the model is consistent with the profile derived from repeat hydrographic data. By further comparing the model results to the cDrake and DRAKE observations, we argue that the modeled 157.3 Sv transport, that is, approximately the average of the cDrake and DRAKE estimates, is actually representative of the time‐mean ACC transport through the Drake Passage. The cDrake experiment overestimated the barotropic contribution in part because the array undersampled the deep recirculation southwest of the Shackleton Fracture Zone, whereas the surface geostrophic currents used in the DRAKE estimate yielded a weaker near‐surface transport than implied by the SADCP data. We also find that the modeled baroclinic and barotropic transports are not correlated; thus, monitoring either baroclinic or barotropic transport alone may be insufficient to assess the temporal variability of the total ACC transport

    Bottom pressure torque and the vorticity balance from observations in Drake Passage

    Get PDF
    The vorticity balance of the Antarctic Circumpolar Current in Drake Passage is examined using 4 years of observations from current‐ and pressure‐recording inverted echo sounders. The time‐varying vorticity, planetary and relative vorticity advection, and bottom pressure torque are calculated in a two‐dimensional array in the eddy‐rich Polar Frontal Zone (PFZ). Bottom pressure torque is also estimated at sites across Drake Passage. Mean and eddy nonlinear relative vorticity advection terms dominate over linear advection in the local (50‐km scale) vorticity budget in the PFZ, and are balanced to first order by the divergence of horizontal velocity. Most of this divergence comes from the ageostrophic gradient flow, which also provides a second‐order adjustment to the geostrophic relative vorticity advection. Bottom pressure torque is approximately one‐third the size of the local depth‐integrated divergence. Although the cDrake velocity fields exhibit significant turning with depth throughout Drake Passage even in the mean, surface vorticity advection provides a reasonable representation of the depth‐integrated vorticity balance. Observed near‐bottom currents are strongly topographically steered, and bottom pressure torques grow large where strong near‐bottom flows cross steep topography at small angles. Upslope flow over the northern continental slope dominates the bottom pressure torque in cDrake, and the mean across this Drake Passage transect, 3 to urn:x-wiley:21699275:media:jgrc21771:jgrc21771-math-0001 m s−2, exceeds the mean wind stress curl by a factor of 15–20

    Macronutrient and carbon supply, uptake and cycling across the Antarctic Peninsi shelf during summer

    Get PDF
    The West Antarctic Peninsula shelf is a region of high seasonal primary production which supports a large and productive food web, where macronutrients and inorganic carbon are sourced primarily from intrusions of warm saline Circumpolar Deep Water. We examined the cross-shelf modification of this water mass during mid-summer 2015 to understand the supply of nutrients and carbon to the productive surface ocean, and their subsequent uptake and cycling. We show that nitrate, phosphate, silicic acid and inorganic carbon are progressively enriched in subsurface waters across the shelf, contrary to cross-shelf reductions in heat, salinity and density. We use nutrient stoichiometric and isotopic approaches to invoke remineralization of organic matter, including nitrification below the euphotic surface layer, and dissolution of biogenic silica in deeper waters and potentially shelf sediment porewaters, as the primary drivers of cross-shelf enrichments. Regenerated nitrate and phosphate account for a significant proportion of the total pools of these nutrients in the upper ocean, with implications for the seasonal carbon sink. Understanding nutrient and carbon dynamics in this region now will inform predictions of future biogeochemical changes in the context of substantial variability and ongoing changes in the physical environment

    Wind-Driven Processes Controlling Oceanic Heat Delivery to the Amundsen Sea, Antarctica

    Get PDF
    Variability in the heat delivery by Circumpolar Deep Water (CDW) is responsible for modulating the basal melting of the Amundsen Sea ice shelves. However, the mechanisms controlling the CDW inflow to the region’s continental shelf remain little understood. Here, a high-resolution regional model is used to assess the processes governing heat delivery to the Amundsen Sea. The key mechanisms are identified by decomposing CDW temperature variability into two components associated with 1) changes in the depth of isopycnals [heave (HVE)], and 2) changes in the temperature of isopycnals [water mass property changes (WMP)]. In the Dotson–Getz trough, CDW temperature variability is primarily associated with WMP. The deeper thermocline and shallower shelf break hinder CDW access to that trough, and CDW inflow is regulated by the uplift of isopycnals at the shelf break—which is itself controlled by wind-driven variations in the speed of an undercurrent flowing eastward along the continental slope. In contrast, CDW temperature variability in the Pine Island–Thwaites trough is mainly linked to HVE. The shallower thermocline and deeper shelf break there permit CDW to persistently access the continental shelf. CDW temperature in the area responds to wind-driven modulation of the water mass on-shelf volume by changes in the rate of inflow across the shelf break and in Ekman pumping-induced vertical displacement of isopycnals within the shelf. The western and eastern Amundsen Sea thus represent distinct regimes, in which wind forcing governs CDW-mediated heat delivery via different dynamics

    The South Atlantic circulation between 34.5°S, 24°S and above the Mid‐Atlantic Ridge from an inverse box model

    Get PDF
    The South Atlantic Ocean plays a key role in the heat exchange of the climate system, as it hosts the returning flow of the Atlantic Meridional Overturning Circulation (AMOC). To gain insights on this role, using data from three hydrographic cruises conducted in the South Atlantic Subtropical gyre at 34.5°S, 24°S, and 10°W, we identify water masses and compute absolute geostrophic circulation using inverse modeling. In the upper layers, the currents describe the South Atlantic anticyclonic gyre with the northwest flowing Benguela Current (26.3 ± 2.0 Sv at 34.5°S, and 21.2 ± 1.8 Sv at 24°S) flowing above the Mid-Atlantic Ridge (MAR) between 22.4°S and 28.4°S (−19.2 ± 1.4 Sv), and the southward flowing Brazil Current (−16.5 ± 1.3 Sv at 34.5°S, and −7.3 ± 0.9 Sv at 24°S); the deep layers feature the southward transports of Deep Western Boundary Current (−13.9 ± 3.0 Sv at 34.5°S, and −8.7 ± 3.8 Sv at 24°S) and Deep Eastern Boundary Current (−15.1 ± 3.5 Sv at 34.5°S, and −16.3 ± 4.7 Sv at 24°S), with the interbasin west-to-east flow close to 24°S (7.5 ± 4.4 Sv); the abyssal waters present northward mass transports through the Argentina Basin (5.6 ± 1.1 Sv at 34.5°S, and 5.8 ± 1.5 Sv at 24°S) and Cape Basin (8.6 ± 3.5 Sv at 34.5°S–3.0 ± 0.8 Sv at 24°S) before returning southward (−2.2 ± 0.7 Sv at 24°S to −7.9 ± 3.6 Sv at 34.5°S), without any interbasin exchange across the MAR. In addition, we compute the upper AMOC strength (14.8 ± 1.0 and 17.5 ± 0.9 Sv), the equatorward heat transport (0.30 ± 0.05 and 0.80 ± 0.05 PW), and the freshwater flux (0.18 ± 0.02 and −0.07 ± 0.02 Sv) at 34.5°S and 24°S, respectively

    Equity at sea: Gender and inclusivity in UK sea-going science

    Get PDF
    Today, we can celebrate a strong representation of women in sea-going science in the United Kingdom, providing positive role models for early-career female marine scientists. However, women continue to face challenges to their progression in their marine science careers, especially those who are also members of other under-represented groups. In this article we consider gender equity and equality in participation and leadership in sea-going marine science in the UK, discussing successes and lessons learned for the future. After a brief history of UK women in ocean science, and a summary of some recent advances in gender equality, we look at further areas in need of improvement, and ask whether successes in improved gender equality can be transferred to tackling other forms of under-representation in sea-going science

    Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf

    Get PDF
    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change1, 2. The increased freshwater output from Antarctica is important in determining sea level rise1, the fate of Antarctic sea ice and its effect on the Earth’s albedo4, 5, ongoing changes in global deep-ocean ventilation6, and the evolution of Southern Ocean ecosystems and carbon cycling7, 8. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models3–5, 9 as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels10, 11, 12, 13, 14. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models

    Structure and Dynamical Balance of the Antarctic Circumpolar Current in Drake Passage

    No full text
    This thesis investigates the structure and dynamics of the Antarctic Circumpolar Current (ACC) in Drake Passage using observations that resolve spatial scales from 100 m to 1000 km and temporal scales from inertial to interannual. The structure and variability of the current, the eddy and mean contributions to the vorticity balance, and the patterns of internal wave activity are examined. The two primary sources of data are a long time series (2005-present) of upper ocean currents from the ARSV Laurence M. Gould (LMG) shipboard acoustic Doppler current profiler (SADCP), and a four-year process study (cDrake) providing time series of near-bottom currents, bottom pressures, and bottom-surface sound travel times as well as bathymetry, lowered ADCP, and CTD data from five yearly cruises. The vertical structure in the upper 1000 m is equivalent barotropic, with variable vertical length scale. The mean transport in the upper 1000 m is 95±2 Sv. Transport variability is approximately equally divided between shear and depth-mean components. Eddy kinetic energy decreases with depth faster than mean kinetic energy, reinforcing the view of the ACC as a barrier to mixing. Using empirical relationships determined from historical hydrography, travel time data from the cDrake array in the PFZ can be converted to baroclinic streamfunction. The near-bottom current and bottom pressure measurements provide the barotropic reference velocity. Streamfunction derivatives can be computed by objective mapping. We used independent measurements and simulated idealized fields to validate the objectively mapped fields and error estimates. Mean and eddy nonlinear vorticity advection and bottom pressure torque dominate the mean vorticity balance. The residual is first order. SOSE has the same balance and similar scales, with the residual accounted for by sub-grid-scale dissipation. In the southeastern Pacific a Rossby-wave-like balance between mean relative vorticity advection and planetary vorticity advection is observed. Downward-propagating internal wave energy and shear-strain ratios consistent with near-inertial frequencies predominate over deep waters and in the surface layer. Over shallower topography upward-propagating energy and supra-inertial frequencies dominate. The seasonal cycles in wind stress and internal wave energy south of the Polar Front are aligned; the seasonal cycle north of the Polar Front matches that in surface-layer stratification
    corecore