14 research outputs found

    A Modified Laminotomy for Interlaminar Endoscopic Lumbar Discectomy: Technical Report and Preliminary Results

    Get PDF
    Objective To introduce a technique of laminotomy using a common trephine to enlarge the interlaminar space at L4/5 segment for interlaminar endoscopic lumbar discectomy (IELD) and report the anatomical basis of this procedure, technical details, as well as primary clinical outcomes of a consecutive patient cohort with L4/5 lumbar disc herniation (LDH). Methods On anteroposterior fluoroscopy, the intersection of the medial edge of the inferior articular process and the inferior endplate of L4 vertebra was taken as the target. Using a common trephine, laminotomy was performed to remove a big portion of the posterior wall of the canal under the guidance of endoscopy. From June 2018 to December 2021, the consecutive patients who underwent L4/5 IELD were prospectively studied. Clinical outcomes were assessed at the day before surgery, 1 day, 1 month, 3 months, 12 months after surgery, and the last follow-up. Numerical Rating Scale, Roland-Morris Disability Questionnaire (RMDQ), and MacNab criteria were used to evaluate back and leg pain, the quality of life, and clinical efficacy, respectively. Results There were 64 men and 44 women, with an age of 50.3 ± 14.9 years. The operating time was 74.54 ± 17.42 minutes. The mean follow-up time was 32.7 ± 18.6 months (range, 12–64 months). The complications of IELD included numbness, neck pain, and recurrence. Both leg pain (6.2 ± 1.9 vs. 1.8 ± 0.8, p < 0.001) and back pain (3.1 ± 2.3 vs. 1.7 ± 0.9, p < 0.001) quickly improved after this procedure and maintained (1.1 ± 1.5, 1.1 ± 1.3) at final follow-up. Physical disability due to back pain, as assessed using RMDQ, was improved remarkably after surgery (15.0 ± 5.8 vs. 2.9 ± 4.1, p < 0.001). In addition, MacNab outcome grade was evaluated as good-to-excellent in 96 cases (88.9%). Conclusion A convenient technique of laminotomy using a common trephine was proposed for the L4/5 IELD. It can efficiently enlarge the interlaminar entry to perform endoscopic discectomy. This procedure is particularly suitable for treating LDH with concomitant lumbar spinal stenosis and migrated herniated disc

    SHREC 2018 - Protein Shape Retrieval

    Get PDF
    Proteins are macromolecules central to biological processes that display a dynamic and complex surface. They display multiple conformations differing by local (residue side-chain) or global (loop or domain) structural changes which can impact drastically their global and local shape. Since the structure of proteins is linked to their function and the disruption of their interactions can lead to a disease state, it is of major importance to characterize their shape. In the present work, we report the performance in enrichment of six shape-retrieval methods (3D-FusionNet, GSGW, HAPT, DEM, SIWKS and WKS) on a 2 267 protein structures dataset generated for this protein shape retrieval track of SHREC’18

    Development of a dynamical statistical analog ensemble forecast model for landfalling typhoon disasters

    No full text
    Abstract In this report, the development of a Dynamical Statistical Analog Ensemble Forecast model for landfalling typhoon disasters (LTDs) and some applications over coastal China are described. This model consists of the following four elements: (i) obtaining the forecast track of a target landfalling typhoon, (ii) constructing its generalized initial value (GIV), (iii) identifying its analogs based on the GIV, and (iv) assembling typhoon disasters of the analogs. Typhoon track, intensity, and landfall date are introduced in GIV at this early development stage. The pre-assessment results show that the mean threat scores of two important damage levels of LTDs reach 0.48 and 0.55, respectively. Of significance is that most of the damage occurs near the typhoon centers around the time of landfall. These results indicate the promising performance of the model in capturing the main damage characteristics of typhoon disasters, which would help coastal community mitigate damage from destructive typhoons

    Cd isotopic constraints on the sources of Zn-Sb deposits: A case study of the Jianzhupo Zn-Sb deposit, Guangxi Province, China

    No full text
    International audienceAntimony (Sb) is identified as a critical metal in many countries. The source of hydrothermal Sb-bearing deposits is currently debated in two opposing models (magmatic fluids or country rocks). Some Sb-bearing hydrothermal systems host abundant cadmium (Cd). Due to the close association of Cd and Sb in hydrothermal systems and the distinct Cd isotopic signatures between magmatic and sedimentary rocks, Cd isotopes have the potential to trace the metal origin in Sb-bearing deposits. Here, we conducted Cd isotope analyses of sulfide (jamesonite and sphalerite) collected from the Jianzhupo Zn-Sb deposit, SW China. A narrow range of δ114/110Cd relative to NIST SRM 3108 Cd standard was observed in sphalerites (−0.15‰ to +0.18‰; mean = 0.03‰ ± 0.10‰, one standard deviation [1SD]), identical to that of intermediate igneous rocks (−0.20‰ to +0.15‰); in contrast, pure jamesonites show a large range of δ114/110Cd (−0.42‰ to +0.17‰; mean = −0.22‰ ± 0.20‰, 1SD), differing from those of sphalerite. Different Cd isotope signatures between jamesonite and sphalerite are unlikely to have been triggered by sulfide precipitation, vapor-liquid phase separation, diffusion, and different Cd-S bond strengths. Instead, based on a comparison of δ114/110Cd and Zn/Cd ratio of sulfide and potential source rocks, we propose that a mixing of two ore-forming endmembers, derived from igneous and sedimentary rocks, may better explain the sulfide Cd isotopic signatures. This is supported by the well-defined positive correlation between δ114/110Cd and Zn/Cd ratio in sulfides. This study shows a novel application of Cd isotopes for metallogenetic tracing and demonstrates that Sb-bearing hydrothermal systems can incorporate metals from multiple sources

    LncRNA-Mediated Adipogenesis in Different Adipocytes

    No full text
    Long-chain noncoding RNAs (lncRNAs) are RNAs that do not code for proteins, widely present in eukaryotes. They regulate gene expression at multiple levels through different mechanisms at epigenetic, transcription, translation, and the maturation of mRNA transcripts or regulation of the chromatin structure, and compete with microRNAs for binding to endogenous RNA. Adipose tissue is a large and endocrine-rich functional tissue in mammals. Excessive accumulation of white adipose tissue in mammals can cause metabolic diseases. However, unlike white fat, brown and beige fats release energy as heat. In recent years, many lncRNAs associated with adipogenesis have been reported. The molecular mechanisms of how lncRNAs regulate adipogenesis are continually investigated. In this review, we discuss the classification of lncRNAs according to their transcriptional location. lncRNAs that participate in the adipogenesis of white or brown fats are also discussed. The function of lncRNAs as decoy molecules and RNA double-stranded complexes, among other functions, is also discussed

    <i>n</i>-3 PUFA Promotes Ferroptosis in PCOS GCs by Inhibiting YAP1 through Activation of the Hippo Pathway

    No full text
    Polycystic ovary syndrome (PCOS) is an endocrine disorder characterized by hyperandrogenemia with multiple suspended sinus follicles, thickened cortical tissue, and excessive proliferation of ovarian granulosa cells that severely affects the fertility and quality of life of women. The addition of n-3 PUFA to the diet may slightly reduce body weight and greatly alleviate disturbed blood hormone levels in PCOS mice. We treated KGN as a cell model for n-3 PUFA addition and showed that n-3 PUFA inhibited the proliferation of GCs and promoted ferroptosis in ovarian granulosa cells. We used CCK-8, fluorescence quantitative transmission electron microscopy experiments and ferroptosis marker gene detection and other methods. Furthermore, n-3 PUFA was found to promote YAP1 exocytosis by activating Hippo and weakening the cross-talk between YAP1 and Nrf2 by activating the Hippo signaling pathway. In this study, we found that n-3 PUFA inhibited the over proliferation of granulosa cells in ovarian follicles by activating Hippo, promoting YAP1 exocytosis, weakening the cross-talk between YAP1 and Nrf2, and ultimately activating the ferroptosis sensitivity of ovarian granulosa cells. We demonstrate that n-3 PUFA can alleviate the hormonal and estrous cycle disorder with PCOS by inhibiting the YAP1-Nrf2 crosstalk that suppresses over proliferating ovarian granulosa cells and promotes iron death in GCs. These findings reveal the molecular mechanisms by which n-3 PUFA attenuates PCOS and identify YAP1-Nrf2 as a potential therapeutic target for regulation granulosa cells in PCOS

    Protein Shape Retrieval

    No full text
    Proteins are macromolecules central to biological processes that display a dynamic and complex surface. They display multiple conformations differing by local (residue side-chain) or global (loop or domain) structural changes which can impact drastically their global and local shape. Since the structure of proteins is linked to their function and the disruption of their interactions can lead to a disease state, it is of major importance to characterize their shape. In the present work, we report the performance in enrichment of six shape-retrieval methods (3D-FusionNet, GSGW, HAPT, DEM, SIWKS and WKS) on a 2 267 protein structures dataset generated for this protein shape retrieval track of SHREC'18
    corecore