123 research outputs found

    Research and Development of Computer Software to Create Story Problems to Promote the Children’s Individual Development (VIII)

    Get PDF
    これまでの和差に関する算数文章題の研究より,答えを求めるための演算と,言語的な物語が示唆する演算が異なる場合に児童の理解が混乱しているとの知見が得られている。本研究では,和差の算数文章題がその背景としての物語において含んでいる一つの和と二つの差の関係(1和2差関係)の把握が不十分であることがこの混乱の原因と考え,この1和2差の構造を可視化する全体部分関係を用いて,1回の和差に関するすべての算数文章題が,一つの和と二つの差を含んでいることを児童に理解させるための授業とその授業に則した演習支援ソフトウェアの開発およびその実践利用を行った。開発した授業およびソフトウェアを小学2年生1クラス,小学3年生2クラスにおいて実施し,その実施可能性を確認した。また,作問課題をプレテストおよびポストテストとして,逆思考問題の作成能力に関して顕著な効果が見られることを確認した・これは,児童の文章題に対する構造的理解が深まったことを示唆する結果であり,本研究の目的は達成されたと考えられる。In this research project, we developed computer software to allow a pupil to operate sentences of arithmetic word problems, numerical expressions, and whole-part relations. We then and designed a curriculum to promote student comprehension of the structure of arithmetic word problems by using this software. We conducted practical teaching following the curriculum and based on the software for one second-grade class and two third-grade classes, with 10 class sessions in total. Through the practical use, we have confirmed that the software and curriculum were useful to promote student comprehension of the structure of arithmetic word problems by measuring their problem-posing performance

    Ferrocenylnaphthalene Diimide-Based Electrochemical Detection of Aberrant Methylation in hTERT Gene

    Get PDF
    Since aberrant methylation at CpG sites is linked to the silencing of tumor suppressor genes, DNA methylation analysis is important for cancer diagnosis. We developed ferrocenylnaphthalene diimide (FND), which has two ferrocenyl moieties at the substituent termini, as an electrochemical indicator for hybridized DNA duplexes. In this study, we attempted to detect aberrant methylation of human telomerase reverse transcriptase gene (hTERT), an efficient cancer marker, using FND-based hybridization coupled with electrochemical detection via a multi-electrode chip

    A Sillén Oxyhalide SrBi₃O₄Cl₃ as a Promising Photocatalyst for Water Splitting: Impact of the Asymmetric Structure on Light Absorption and Charge Carrier Dynamics

    Get PDF
    Bismuth-based oxyhalides with layered Sillén(–Aurivillius) structures have attracted significant attention as photocatalysts. Recent studies have unveiled a part of the structure–property relationship of the materials; however, it has not been fully understood. In the present study, we investigated a Sillén-type oxyhalide SrBi₃O₄Cl₃ with single and double halogen layers. Interestingly, SrBi₃O₄Cl₃ showed a visible light response up to ∼460 nm, whereas SrBiO₂Cl and BiOCl with single and double halogen layers, respectively, did not. Rietveld refinement and STEM-EDX mapping determined the asymmetric Bi occupation in the fluorite [Sr₀.₅Bi₁.₅O₂] layer of SrBi₃O₄Cl₃, which was derived from the coexistence of the halogen layers. DFT calculations and Madelung potential calculations showed that the asymmetric Bi occupation affords both the Bi–Bi interaction across the single halogen layer and the electrostatic destabilization of Cl in the double halogen layer, probably leading to the narrow bandgap of SrBi₃O₄Cl₃. Another merit of possessing the two different halogen layers was revealed by time-resolved microwave conductivity measurements as well as DFT calculations; the spatial separation of the conduction band minimum and valence band maximum based on the coexistence of the halogen layers would promote charge carrier separation. Visible-light-driven Z-scheme water splitting was accomplished using a RuO₂-loaded SrBi₃O₄Cl₃ sample as an O₂-evolving photocatalyst. This study provides another option for engineering band structures and promoting the charge carrier separation of layered oxyhalides for efficient water splitting under visible light

    Salvage Haploidentical Transplantation Using Low-dose ATG for Early Disease Relapse after First Allogeneic Transplantation: A Retrospective Single-center Review

    Get PDF
    Second allogeneic stem cell transplantation (allo-SCT) is a potentially curative therapy for patients who relapse after first allo-SCT. Human leukocyte antigen (HLA)-haploidentical related donors provide the broad opportunity to conduct second SCT at the appropriate time, but the efficacy of second SCT from haploidentical donors after relapse has not been established. We retrospectively analyzed the records of 33 patients who underwent second SCT. Twenty patients underwent haplo-SCT with low-dose antithymocyte globulin (ATG), and the other 13 patients underwent conventional- SCTs, including HLA-matched related peripheral blood, unrelated bone marrow or cord blood. Three years after the second SCT, the overall survival (OS) and progression-free survival (PFS) of all patients were 32.5% and 23.9%. Multivariate analyses indicated that non-complete response at second SCT, less than 1-year interval to relapse after first- SCT, and total score ≥ 3 on the hematopoietic cell transplantation-specific comorbidity index were significantly associated with a lower PFS rate. The haplo- and conventional- SCT groups showed equivalent results regarding OS, PFS, cumulative incidences of relapse, non-relapse mortality and graft-versus-host disease. The neutropenic period after transplantation was significantly shorter in haplo- SCT than conventional- SCT (10.5 days vs. 16 days, p=0.001). Our analysis revealed that haplo-SCT could be an alternative therapeutic option for relapsed patients after first SCT

    Variants of C-C Motif Chemokine 22 (CCL22) Are Associated with Susceptibility to Atopic Dermatitis: Case-Control Studies

    Get PDF
    Atopic dermatitis (AD) is a common inflammatory skin disease caused by multiple genetic and environmental factors. AD is characterized by the local infiltration of T helper type 2 (Th2) cells. Recent clinical studies have shown important roles of the Th2 chemokines, CCL22 and CCL17 in the pathogenesis of AD. To investigate whether polymorphisms of the CCL22 gene affect the susceptibility to AD, we conducted association studies and functional studies of the related variants. We first resequenced the CCL22 gene and found a total of 39 SNPs. We selected seven tag SNPs in the CCL22 gene, and conducted association studies using two independent Japanese populations (1st population, 916 cases and 1,032 controls; 2nd population 1,034 cases and 1,004 controls). After the association results were combined by inverse variance method, we observed a significant association at rs4359426 (meta-analysis, combined P = 9.6×10−6; OR, 0.74; 95% CI, 0.65–0.85). Functional analysis revealed that the risk allele of rs4359426 contributed to higher expression levels of CCL22 mRNA. We further examined the allelic differences in the binding of nuclear proteins by electrophoretic mobility shift assay. The signal intensity of the DNA-protein complex derived from the G allele of rs223821, which was in absolute LD with rs4359426, was higher than that from the A allele. Although further functional analyses are needed, it is likely that related variants play a role in susceptibility to AD in a gain-of-function manner. Our findings provide a new insight into the etiology and pathogenesis of AD

    ORAI1 Genetic Polymorphisms Associated with the Susceptibility of Atopic Dermatitis in Japanese and Taiwanese Populations

    Get PDF
    Atopic dermatitis is a chronic inflammatory skin disease. Multiple genetic and environmental factors are thought to be responsible for susceptibility to AD. In this study, we collected 2,478 DNA samples including 209 AD patients and 729 control subjects from Taiwanese population and 513 AD patients and 1027 control subject from Japanese population for sequencing and genotyping ORAI1. A total of 14 genetic variants including 3 novel single-nucleotide polymorphisms (SNPs) in the ORAI1 gene were identified. Our results indicated that a non-synonymous SNP (rs3741596, Ser218Gly) associated with the susceptibility of AD in the Japanese population but not in the Taiwanese population. However, there is another SNP of ORAI1 (rs3741595) associated with the risk of AD in the Taiwanese population but not in the Japanese population. Taken together, our results indicated that genetic polymorphisms of ORAI1 are very likely to be involved in the susceptibility of AD

    An attenuated vaccinia vaccine encoding the severe acute respiratory syndrome coronavirus-2 spike protein elicits broad and durable immune responses, and protects cynomolgus macaques and human angiotensin-converting enzyme 2 transgenic mice from severe acute respiratory syndrome coronavirus-2 and its variants

    Get PDF
    As long as the coronavirus disease-2019 (COVID-19) pandemic continues, new variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with altered antigenicity will emerge. The development of vaccines that elicit robust, broad, and durable protection against SARS-CoV-2 variants is urgently required. We have developed a vaccine consisting of the attenuated vaccinia virus Dairen-I (DIs) strain platform carrying the SARS-CoV-2 S gene (rDIs-S). rDIs-S induced neutralizing antibody and T-lymphocyte responses in cynomolgus macaques and human angiotensin-converting enzyme 2 (hACE2) transgenic mice, and the mouse model showed broad protection against SARS-CoV-2 isolates ranging from the early-pandemic strain (WK-521) to the recent Omicron BA.1 variant (TY38-873). Using a tandem mass tag (TMT)-based quantitative proteomic analysis of lung homogenates from hACE2 transgenic mice, we found that, among mice subjected to challenge infection with WK-521, vaccination with rDIs-S prevented protein expression related to the severe pathogenic effects of SARS-CoV-2 infection (tissue destruction, inflammation, coagulation, fibrosis, and angiogenesis) and restored protein expression related to immune responses (antigen presentation and cellular response to stress). Furthermore, long-term studies in mice showed that vaccination with rDIs-S maintains S protein-specific antibody titers for at least 6 months after a first vaccination. Thus, rDIs-S appears to provide broad and durable protective immunity against SARS-CoV-2, including current variants such as Omicron BA.1 and possibly future variants
    corecore