3 research outputs found

    Intelligent Android malware family classification using Genetic Algorithms and SVM

    Get PDF
    As of April 2019, Android was the most popular mobile operating system amongst smartphone users[1]. Its high popularity, combined with the extended use of smartphones for everyday tasks as well as storing or accessing sensitive and personal data, has made Android applications the target of numerous malware attacks over the last few years and in the present. The malware attacks have been perfected to target specific vulnerabilities in the operating system or the user; thus specializing in types of malware and families within each type. The malware is usually distributed in infected applications (or APKs), which contain malicious behaviours that can be found looking into their code (known as static analysis) or analysing the behaviour of the application while running (known as dynamic analysis). This document describes the implementation of an intelligent system that aims to classify a series of malicious APK samples obtained from the free repository ContagioDump. These samples are classified inside the type and family they belong to. To create the classifier system, a Support Vector Machine (SVM) is implemented using Python’s library Scikit Learn. A series of attributes are extracted from the samples of malicious APK by analysing the code of the APKs via static analysis, using Python’s library Androguard, which contains a parser that allows to interact with all the relevant parts of the APK file. The attributes obtained are very high in number, and for that reason a Genetic Algorithm is used to optimize the attributes that the SVM uses in the learning process. The algorithm codifies a subset of attributes from all the attributes extracted in the static analysis, and is evaluated using the accuracy score obtained when training the SVM with said subset. As a result, a subset of attributes and a trained model for the classification are obtained. This model is then tested with a new set of malware samples, belonging to all the families classified in the learning. The present document contains the explanation of the process of designing, creating and testing the system. It is developed as bachelor’s thesis for computer science and engineering degree in Universidad Carlos III de Madrid.Ingeniería en Tecnologías de Telecomunicación (Plan 2010

    Tocilizumab in refractory Caucasian Takayasu's arteritis: a multicenter study of 54 patients and literature review

    Get PDF
    Objective: To assess the efficacy and safety of tocilizumab (TCZ) in Caucasian patients with refractory Takayasu's arteritis (TAK) in clinical practice. Methods: A multicenter study of Caucasian patients with refractory TAK who received TCZ. The outcome variables were remission, glucocorticoid-sparing effect, improvement in imaging techniques, and adverse events. A comparative study between patients who received TCZ as monotherapy (TCZMONO) and combined with conventional disease modifying anti-rheumatic drugs (cDMARDs) (TCZCOMBO) was performed. Results: The study comprised 54 patients (46 women/8 men) with a median [interquartile range (IQR)] age of 42.0 (32.5-50.5) years. TCZ was started after a median (IQR) of 12.0 (3.0-31.5) months since TAK diagnosis. Remission was achieved in 12/54 (22.2%), 19/49 (38.8%), 23/44 (52.3%), and 27/36 (75%) patients at 1, 3, 6, and 12 months, respectively. The prednisone dose was reduced from 30.0 mg/day (12.5-50.0) to 5.0 (0.0-5.6) mg/day at 12 months. An improvement in imaging findings was reported in 28 (73.7%) patients after a median (IQR) of 9.0 (6.0-14.0) months. Twenty-three (42.6%) patients were on TCZMONO and 31 (57.4%) on TCZCOMBO: MTX (n = 28), cyclosporine A (n = 2), azathioprine (n = 1). Patients on TCZCOMBO were younger [38.0 (27.0-46.0) versus 45.0 (38.0-57.0)] years; difference (diff) [95% confidence interval (CI) = -7.0 (-17.9, -0.56] with a trend to longer TAK duration [21.0 (6.0-38.0) versus 6.0 (1.0-23.0)] months; diff 95% CI = 15 (-8.9, 35.5), and higher c-reactive protein [2.4 (0.7-5.6) versus 1.3 (0.3-3.3)] mg/dl; diff 95% CI = 1.1 (-0.26, 2.99). Despite these differences, similar outcomes were observed in both groups (log rank p = 0.862). Relevant adverse events were reported in six (11.1%) patients, but only three developed severe events that required TCZ withdrawal. Conclusion: TCZ in monotherapy, or combined with cDMARDs, is effective and safe in patients with refractory TAK of Caucasian origin.Funding: This work was partially supported by RETICS Programs, RD08/0075 (RIER), RD12/0009/0013 and RD16/0012 from “Instituto de Salud Carlos III” (ISCIII) (Spain)

    Tocilizumab in refractory Caucasian Takayasu's arteritis : a multicenter study of 54 patients and literature review

    Get PDF
    Objective: To assess the efficacy and safety of tocilizumab (TCZ) in Caucasian patients with refractory Takayasu's arteritis (TAK) in clinical practice. Methods: A multicenter study of Caucasian patients with refractory TAK who received TCZ. The outcome variables were remission, glucocorticoid-sparing effect, improvement in imaging techniques, and adverse events. A comparative study between patients who received TCZ as monotherapy (TCZ) and combined with conventional disease modifying anti-rheumatic drugs (cDMARDs) (TCZ) was performed. Results: The study comprised 54 patients (46 women/8 men) with a median [interquartile range (IQR)] age of 42.0 (32.5-50.5) years. TCZ was started after a median (IQR) of 12.0 (3.0-31.5) months since TAK diagnosis. Remission was achieved in 12/54 (22.2%), 19/49 (38.8%), 23/44 (52.3%), and 27/36 (75%) patients at 1, 3, 6, and 12 months, respectively. The prednisone dose was reduced from 30.0 mg/day (12.5-50.0) to 5.0 (0.0-5.6) mg/day at 12 months. An improvement in imaging findings was reported in 28 (73.7%) patients after a median (IQR) of 9.0 (6.0-14.0) months. Twenty-three (42.6%) patients were on TCZ and 31 (57.4%) on TCZ: MTX (n = 28), cyclosporine A (n = 2), azathioprine (n = 1). Patients on TCZ were younger [38.0 (27.0-46.0) versus 45.0 (38.0-57.0)] years; difference (diff) [95% confidence interval (CI) = -7.0 (-17.9, -0.56] with a trend to longer TAK duration [21.0 (6.0-38.0) versus 6.0 (1.0-23.0)] months; diff 95% CI = 15 (-8.9, 35.5), and higher c-reactive protein [2.4 (0.7-5.6) versus 1.3 (0.3-3.3)] mg/dl; diff 95% CI = 1.1 (-0.26, 2.99). Despite these differences, similar outcomes were observed in both groups (log rank p = 0.862). Relevant adverse events were reported in six (11.1%) patients, but only three developed severe events that required TCZ withdrawal. Conclusion: TCZ in monotherapy, or combined with cDMARDs, is effective and safe in patients with refractory TAK of Caucasian origin
    corecore