9 research outputs found

    Signal Transduction-Directed Cancer Treatments

    No full text
    The pathogenic mechanisms giving rise to cancer frequently involve altered signal transduction pathways. Therefore therapeutic agents that directly address signal transduction molecules are being explored as cancer treatments. Inhibitors of protein tyrosine and threonine kinases including STI-571, ZD-1839, OSI-774, and flavopiridol are ATP-site antagonists that have completed initial phase I and phase II evaluations. Herceptin and C225 are monoclonal antibodies also directed against signaling targets. Numerous other kinase antagonists are in clinical evaluation, including UCN-01 and PD184352. Alternative strategies to downmodulate kinase-driven signaling include 17-allyl-amino-17-demethoxygeldanamycin and rapamycin derivatives, and phospholipase-directed signaling may be modulated by alkylphospholipids. Farnesyltransferase inhibitors were originally developed as inhibitors of ras-driven signals but may have activity by affecting other or additional targets. Signal transduction will remain a fertile basis for suggesting cancer treatments of the future, the evaluation of which should include monitoring effects of the drugs on their intended target signaling molecules in preclinical and early clinical studies

    Bortezomib plus rituximab versus rituximab in patients with high-risk, relapsed, rituximab-na\uefve or rituximab-sensitive follicular lymphoma: subgroup analysis of a randomized phase 3 trial

    Get PDF
    BACKGROUND: The randomized phase 3 LYM3001 trial in relapsed follicular lymphoma (FL) demonstrated higher overall (ORR) and complete response (CR) rates and prolonged progression-free survival (PFS) with bortezomib-rituximab versus rituximab. We report findings in high-risk patients (FL International Prognostic Index [FLIPI] score 653, and high tumor burden by modified Groupe d'Etude des Lymphomas Folliculaires [GELF] criteria). METHODS: Patients aged 6518 years with grade 1/2 FL, 651 measurable lesion, and documented relapse or progression following prior therapy, rituximab-na\uefve or rituximab-sensitive, were enrolled at 164 centers in 29 countries across Europe, the Americas, and Asia-Pacific. Patients were randomized (1:1) to five 5-week cycles of bortezomib-rituximab (bortezomib 1.6 mg/m2, days 1, 8, 15, and 22, all cycles; rituximab 375 mg/m2, days 1, 8, 15, and 22, cycle 1, and day 1, cycles 2-5; N=336) or rituximab alone (N=340). Randomization was stratified by FLIPI score, prior rituximab, time since last dose of anti-lymphoma therapy, and geographical region. The primary endpoint of the study was PFS. RESULTS: 103 bortezomib-rituximab and 98 rituximab patients had high-risk FL. The ORR was 59% versus 37% (p=0.002), the CR/CRu rate was 13% versus 6% (p=0.145), and the durable response rate was 45% versus 26% (p=0.008) with bortezomib-rituximab versus rituximab. Median PFS was 9.5 versus 6.7 months (hazard ratio [HR] 0.667, p=0.012) with bortezomib-rituximab versus rituximab; median time to progression was 10.9 versus 6.8 months (HR 0.656, p=0.009); median time to next anti-lymphoma treatment was 14.8 versus 9.1 months (HR 0.762, p=0.103); and the 1-year Overall Survival rate was 83.1% versus 76.6%. Overall, 51% of bortezomib-rituximab and 32% of rituximab patients reported grade 653 adverse events, including neutropenia (18%, 6%), anemia (4%, 5%), diarrhea (8%, 0%), thrombocytopenia (5%, 2%), and sensory neuropathy (1%, 0%). CONCLUSIONS: High-risk FL patients treated with bortezomib-rituximab had significantly higher ORR and longer PFS than patients receiving rituximab alone, with greater clinical benefit than in the overall study population; additional toxicity was acceptable and did not affect treatment feasibility. TRIAL REGISTRATION: The phase 3 LYM3001 trial is registered with ClinicalTrials.gov, with the identifier NCT00312845

    Prespecified candidate biomarkers identify follicular lymphoma patients who achieved longer progression-free survival with bortezomib-rituximab versus rituximab

    No full text
    Abstract Purpose: Identify subgroups of patients with relapsed/refractory follicular lymphoma deriving substantial progression-free survival (PFS) benefit with bortezomib–rituximab versus rituximab in the phase III LYM-3001 study. Experimental Design: A total of 676 patients were randomized to five 5-week cycles of bortezomib–rituximab or rituximab. The primary end point was PFS; this prespecified analysis of candidate protein biomarkers and genes was an exploratory objective. Archived tumor tissue and whole blood samples were collected at baseline. Immunohistochemistry and genetic analyses were completed for 4 proteins and 8 genes. Results: In initial pairwise analyses, using individual single-nucleotide polymorphism genotypes, one biomarker pair (PSMB1 P11A C/G heterozygote, low CD68 expression) was associated with a significant PFS benefit with bortezomib–rituximab versus rituximab, controlling for multiple comparison corrections. The pair was analyzed under dominant, recessive, and additive genetic models, with significant association with PFS seen under the dominant model (G/G+C/G). In patients carrying this biomarker pair [PSMB1 P11A G allele, low CD68 expression (≤50 CD68-positive cells), population frequency: 43.6%], median PFS was 14.2 months with bortezomib–rituximab versus 9.1 months with rituximab (HR 0.47, P &amp;lt; 0.0001), and there was a significant overall survival benefit (HR 0.49, P = 0.0461). Response rates were higher and time to next antilymphoma therapy was longer in the bortezomib–rituximab group. In biomarker-negative patients, no significant efficacy differences were seen between treatment groups. Similar proportions of patients had high-risk features in the biomarker-positive and biomarker-negative subsets. Conclusions: Patients with PSMB1 P11A (G allele) and low CD68 expression seemed to have significantly longer PFS and greater clinical benefit with bortezomib–rituximab versus rituximab. Clin Cancer Res; 19(9); 2551–61. ©2013 AACR.</jats:p

    Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer

    No full text
    Background CC-chemokine ligand 2 (CCL2) promotes tumor growth by angiogenesis, macrophage infiltration and tumor invasion, and distant metastasis. Carlumab (CNTO 888) is a human IgG(1)? mAb with high affinity and specificity for human CCL2. Preclinical data suggest carlumab may offer clinical benefit to cancer patients. Methods In a phase 2, open-label study, patients with metastatic castration-resistant prostate cancer (CRPC) previously treated with docetaxel received a 90-min infusion of 15 mg/kg carlumab q2w. The primary endpoint was response rate: change from baseline in skeletal lesions, extraskeletal lesions, and PSA values. Secondary endpoints included overall response rate (CR + PR) by RECIST, OS, PSA response, safety, pharmacodynamics, pharmacokinetics, immunogenicity. Results Forty-six patients were treated with 6 median (range 1, 26) doses. One patient had SD &gt;6 months. There were no PSA or RECIST responses. Fourteen (34 %) patients had SD ?3 months. Median OS was 10.2 (95 % CI: 5.2, not estimable) months. Twelve (39 %) patients reported improved pain scores. AEs occurred in 43 (93 %) patients, including 27 (59 %) with grade ?3 AEs. Common grade ?3 AEs were back (11 %) and bone (9 %) pain. Twenty (43 %) patients experienced SAEs, including pneumonia, spinal cord compression, back pain. No patient developed antibodies to carlumab. Steady-state serum concentrations were achieved after 3 repeated doses and were above the 10-?g/mL target concentration. Suppression of free CCL2 serum concentrations was briefly observed following each dose but was not sustained. Conclusion Carlumab was well-tolerated but did not block the CCL2/CCR2 axis or show antitumor activity as a single agent in metastatic CRPC
    corecore