31 research outputs found

    Resonance vector mode locking

    Get PDF
    A mode locked fibre laser as a source of ultra-stable pulse train has revolutionised a wide range of fundamental and applied research areas by offering high peak powers, high repetition rates, femtosecond range pulse widths and a narrow linewidth. However, further progress in linewidth narrowing seems to be limited by the complexity of the carrier-envelope phase control. Here for the first time we demonstrate experimentally and theoretically a new mechanism of resonance vector self-mode locking where tuning in-cavity birefringence leads to excitation of the longitudinal modes sidebands accompanied by the resonance phase locking of sidebands with the adjacent longitudinal modes. An additional resonance with acoustic phonons provides the repetition rate tunability and linewidth narrowing down to Hz range that drastically reduces the complexity of the carrier-envelope phase control and so will open the way to advance lasers in the context of applications in metrology, spectroscopy, microwave photonics, astronomy, and telecommunications

    Pleiotropic Meta-Analysis of Age-Related Phenotypes Addressing Evolutionary Uncertainty in Their Molecular Mechanisms

    Get PDF
    Age-related phenotypes are characterized by genetic heterogeneity attributed to an uncertain role of evolution in establishing their molecular mechanisms. Here, we performed univariate and pleiotropic meta-analyses of 24 age-related phenotypes dealing with such evolutionary uncertainty and leveraging longitudinal information. Our analysis identified 237 novel single nucleotide polymorphisms (SNPs) in 199 loci with phenotype-specific (61 SNPs) and pleiotropic (176 SNPs) associations and replicated associations for 160 SNPs in 68 loci in a modest sample of 26,371 individuals from five longitudinal studies. Most pleiotropic associations (65.3%, 115 of 176 SNPs) were impacted by heterogeneity, with the natural-selection—free genetic heterogeneity as its inevitable component. This pleiotropic heterogeneity was dominated (93%, 107 of 115 SNPs) by antagonistic genetic heterogeneity, a phenomenon that is characterized by antagonistic directions of genetic effects for directly correlated phenotypes. Genetic association studies of age-related phenotypes addressing the evolutionary uncertainty in establishing their molecular mechanisms have power to substantially improve the efficiency of the analyses. A dominant form of heterogeneous pleiotropy, antagonistic genetic heterogeneity, provides unprecedented insight into the genetic origin of age-related phenotypes and side effects in medical care that is counter-intuitive in medical genetics but naturally expected when molecular mechanisms of age-related phenotypes are not due to direct evolutionary selection

    Vector harmonic mode-locking by acoustic resonance

    No full text
    For an Er-doped fiber laser, for the first time, to the best of our knowledge, we demonstrate both experimentally and theoretically a novel mechanism of harmonic mode-locking based on the electrostriction effect leading to excitation of the torsional acoustic modes in the transverse section of the laser. The exited torsional acoustic modes modulate the fiber birefringence that results in synchronization of oscillations at the harmonic modes and the linewidth narrowing with the increased signal-to-noise ratio of 30 dB. By adjusting the in-cavity birefringence based on tuning the polarization controller, we enable the selection of the harmonic mode to be stabilized

    Exome-Wide Association Study Identified Clusters of Pleiotropic Genetic Associations with Alzheimer’s Disease and Thirteen Cardiovascular Traits

    No full text
    Alzheimer’s disease (AD) and cardiovascular traits might share underlying causes. We sought to identify clusters of cardiovascular traits that share genetic factors with AD. We conducted a univariate exome-wide association study and pair-wise pleiotropic analysis focused on AD and 16 cardiovascular traits—6 diseases and 10 cardio-metabolic risk factors—for 188,260 UK biobank participants. Our analysis pinpointed nine genetic markers in the APOE gene region and four loci mapped to the CDK11, OBP2B, TPM1, and SMARCA4 genes, which demonstrated associations with AD at p ≤ 5 × 10−4 and pleiotropic associations at p ≤ 5 × 10−8. Using hierarchical cluster analysis, we grouped the phenotypes from these pleiotropic associations into seven clusters. Lipids were divided into three clusters: low-density lipoprotein and total cholesterol, high-density lipoprotein cholesterol, and triglycerides. This split might differentiate the lipid-related mechanisms of AD. The clustering of body mass index (BMI) with weight but not height indicates that weight defines BMI-AD pleiotropy. The remaining two clusters included (i) coronary heart disease and myocardial infarction; and (ii) hypertension, diabetes mellitus (DM), systolic and diastolic blood pressure. We found that all AD protective alleles were associated with larger weight and higher DM risk. Three of the four (75%) clusters of traits, which were significantly correlated with AD, demonstrated antagonistic genetic heterogeneity, characterized by different directions of the genetic associations and trait correlations. Our findings suggest that shared genetic factors between AD and cardiovascular traits mostly affect them in an antagonistic manner

    Exome-wide age-of-onset analysis reveals exonic variants in ERN1 and SPPL2C associated with Alzheimer’s disease

    No full text
    Despite recent discoveries in genome-wide association studies (GWAS) of genomic variants associated with Alzheimer's disease (AD), its underlying biological mechanisms are still elusive. The discovery of novel AD-associated genetic variants, particularly in coding regions and from APOE ε4 non-carriers, is critical for understanding the pathology of AD. In this study, we carried out an exome-wide association analysis of age-of-onset of AD with ~20,000 subjects and placed more emphasis on APOE ε4 non-carriers. Using Cox mixed-effects models, we find that age-of-onset shows a stronger genetic signal than AD case-control status, capturing many known variants with stronger significance, and also revealing new variants. We identified two novel variants, rs56201815, a rare synonymous variant in ERN1, and rs12373123, a common missense variant in SPPL2C in the MAPT region in APOE ε4 non-carriers. Besides, a rare missense variant rs144292455 in TACR3 showed the consistent direction of effect sizes across all studies with a suggestive significant level. In an attempt to unravel their regulatory and biological functions, we found that the minor allele of rs56201815 was associated with lower average FDG uptake across five brain regions in ADNI. Our eQTL analyses based on 6198 gene expression samples from ROSMAP and GTEx revealed that the minor allele of rs56201815 was potentially associated with elevated expression of ERN1, a key gene triggering unfolded protein response (UPR), in multiple brain regions, including the posterior cingulate cortex and nucleus accumbens. Our cell-type-specific eQTL analysis using ~80,000 single nuclei in the prefrontal cortex revealed that the protective minor allele of rs12373123 significantly increased the expression of GRN in microglia, and was associated with MAPT expression in astrocytes. These findings provide novel evidence supporting the hypothesis of the potential involvement of the UPR to ER stress in the pathological pathway of AD, and also give more insights into underlying regulatory mechanisms behind the pleiotropic effects of rs12373123 in multiple degenerative diseases including AD and Parkinson's disease

    DataSheet1_How are APOE4, changes in body weight, and longevity related? Insights from a causal mediation analysis.docx

    No full text
    The ε4 allele of the APOE gene (APOE4) is known for its negative association with human longevity; however, the mechanism is unclear. APOE4 is also linked to changes in body weight, and the latter changes were associated with survival in some studies. Here, we explore the role of aging changes in weight in the connection between APOE4 and longevity using the causal mediation analysis (CMA) approach to uncover the mechanisms of genetic associations. Using the Health and Retirement Study (HRS) data, we tested a hypothesis of whether the association of APOE4 with reduced survival to age 85+ is mediated by key characteristics of age trajectories of weight, such as the age at reaching peak values and the slope of the decline in weight afterward. Mediation effects were evaluated by the total effect (TE), natural indirect effect, and percentage mediated. The controlled direct effect and natural direct effect are also reported. The CMA results suggest that APOE4 carriers have 19%–22% (TE p = 0.020–0.039) lower chances of surviving to age 85 and beyond, in part, because they reach peak values of weight at younger ages, and their weight declines faster afterward compared to non-carriers. This finding is in line with the idea that the detrimental effect of APOE4 on longevity is, in part, related to the accelerated physical aging of ε4 carriers.</p
    corecore