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A mode locked fibre laser as a source of ultra-stable pulse train has revolutionised a wide 

range of fundamental and applied research areas by offering high peak powers, high 

repetition rates, femtosecond range pulse widths and a narrow linewidth
1-19

. However, 

further progress in linewidth narrowing seems to be limited by the complexity of the 

carrier-envelope phase control
14,15

. Here for the first time we demonstrate experimentally 

and theoretically a new mechanism of resonance vector self-mode locking where tuning in-

cavity birefringence leads to excitation of the longitudinal modes’ sidebands accompanied 

by resonance phase locking sidebands with the adjacent longitudinal modes.  An additional 

resonance with acoustic phonons
18,19

 provides the repetition rate tunability and linewidth 

narrowing down to Hz range that drastically reduces the complexity of the carrier-

envelope phase control and so will open the way to advance lasers in the context of 

applications in metrology, spectroscopy, microwave photonics, astronomy, and 

telecommunications. 
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The mode locked fibre lasers constitute a versatile technology towards producing ultra-

stable femtosecond pulse trains (frequency combs having fractional uncertainties of 10
-19 

and lower
1-3

) with characteristics required in metrology, high resolution Fourier transform 

spectroscopy, microwave photonics, remote sensing, astronomy, and telecommunications
1-

10
. A wide range of the active and passive mode locking techniques, including phase 

modulators, additional passive cavities, active fibres with different modal diameters, 

nonlinear polarisation rotation, and passive saturable absorbers based on carbon nanotubes, 

graphene, and semiconductor mirrors, have been used to narrow the mode-locked pulse and 

increase its energy
11-19

. Though these techniques provide pico- or femto-second scale 
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pulsewidths, it is still the challenge to realize GHz pulse repetition rates with narrow radio-

frequency (RF) linewidth in the Hz range
11-19

. Generally the linewidth narrowing techniques 

are based on the control of the carrier-envelope phase (CEP) φce and provide zero pulse-to-

pulse CEP change (∆φce=0) in the envelope phase 
1-3

 by heterodyning different harmonics 

i.e. by detecting the slippage rate (beat note) fce=frep∆φce /2π as a radio-frequency signal 

(here frep is the pulse repetition rate). The phase locking of fce with a reference signal enables 

CEP stabilisation
1,2

. Such techniques allow the RF linewidth suppression from 1 KHz to 1 

mHz but their extraordinary complexity impose limits for applications
1-3

.  

One way to reduce the complexity of CEP control has been outlined by Grudinin, Gray and 

co-workers
18-19

. They demonstrated that resonance of a harmonic of the fundamental 

longitudinal mode with a transverse acoustic wave leads to tunable mode locking with 

repetition rates between 100 MHz and a few GHz and narrows RF linewidth down to 100 

Hz. It has also been found previously that the multimode Risken-Nummedal-Graham-Haken 

(RNGH) instability
22-25

 in an erbium doped fibre laser (EDFL) is the essential mechanism of 

unstable self-mode-locking. Finding mechanisms beyond the traditional passive or active 

mode locking techniques for further pulse train stabilisation may result in advancing the 

frequency comb technology in the context of aforementioned applications.  

In this Letter, for the first time we demonstrate theoretically and experimentally new 

resonance vector mode locking mechanism leading to the pulse train stabilisation. 

Complemented by the resonance between a harmonic of the longitudinal mode and an acoustic 

wave excited by this comb through the electrostriction effect, the dynamics finally results in 

tunability of the repetition rate and linewidth narrowing.  

The output power versus pump power, the emission spectrum, and the pulse train are shown 

in Figure 1b to 1d. When the pump power exceeded 48 mW, stable mode-locked pulses 

could be observed on the oscilloscope. As shown by Kalashnikov and co-workers
17

, 

observed Lorentzian shape of the optical spectrum in Fig. 1c indicates the presence of 

chirped pulses. As shown in Figure 1d, the observed pulse train has the fundamental 

repetition rate of 12.21 MHz. The mean value of linewidth at the fundamental frequency at the 

3dB level was only 370 Hz (see INSET 1 of Figure 1d and Table 1). This value is much less than 

typical values of 10 KHz found for mode locked lasers with a saturable absorber 
11-16

. The 



transient time for stabilisation of this regime varies from a fraction of second to few minutes. 

 

Figure 1 a, Erbium doped fibre laser. EDF: erbium fibre; LD: l480 nm laser diode for pump; POC1 and 

POC2: polarization controllers, OISO: optical isolator; WDM: wavelength division multiplexer (WDM), 

OUTPUT C: 80:20 output coupler. b,  Average laser output power versus pump power; INSET:  the RF linewidth 

versus pump power. The rectangle indicates the interval where unstable mode-locking patterns have been observed. 

c, The optical spectrum, INSET: the same spectra plotted using a linear scale. d, The train of pulses at the 

fundamental frequency, INSET1: RF spectrum for the fundamental frequency, INSET2: time resolved pulse. 

The pulse trace with 20 ps pulsewidth is shown in the INSET 2 of Figure 1d (Details of 

pulse width measurements are found in section Methods). The most stable patterns observed 

in our experiments were at the fundamental frequency of 12.21 MHz and its high-order 

harmonics at frequencies of 293.16 MHz, 464.17 MHz and 549.7 MHz (Table I).  The dynamics 

of the harmonic mode locking at 293.16 MHz is illustrated in Figures 2a-2d. A segment of the 

RF spectra in the mode locked regime is shown in Figure 2a. The lines "A","B" and "C" 

correspond to the 23
rd

, 24
th

 and 25
th

 harmonics of the fundamental frequency whereas lines “s” 

a)                                              b)                                              

c)                                              d)                                              

IN1 IN2



are satellites of the lines "A","B" and "C". To understand the origin Table 1 Frequencies 

observed in the experiments 

Frequency, 

MHz. 

RF peak 

width, Hz. 

Temporal 

jitter, 

ppm
3 

Long term 

drift 

12,21 [210, 370, 530]
 1,2

 40 Yes 

97.7 Unstable Unstable - 

207.6 Unstable Unstable - 

293.16 [9, 38, 155]
1 

1.4 Yes 

464.17 [22, 38, 150]
1 

0.9 Yes 

549.7 [1, 13, 97]
1
 0.5 Yes 

842.5 Unstable Unstable - 

903.5 Unstable Unstable - 

   1
 Asymmetric interval of confidence 0. 95 [min, mean, max] 

   2
At pump power of 220 mW 

   3
 Parts per million relative to the main value of frequency 

 

of these satellites, we changed birefringence in the laser cavity by turning the knob of the 

polarization controller POC2 and kept the pump power fixed at 160 mW. 

While the angle of the knob was tuned between 18 positions, the satellites of the adjacent lines 

“A” and “C” were moving closer to the line labelled "B" as shown in Figure 2b. To get insight 

into the linewidth compression we show temporal traces and RF spectra for the last four steps 

(labelled with (15), (16), (17) and (18)) in Figures 2c and 2d, respectively. For the position 15 in 

Figures 2c and 2d the distance between the satellites is slightly less than 3MHz and correspond 

to the situation when the satellites vanished completely. The RF line corresponding to the 

fundamental comb frequency appears unchanged and the RF spectrum also seems be unchanged. 

In the position 16, the distance between satellites was diminished. In this position, the noise 

demonstrated a periodic pattern, and the RF spectrum became broader and had "three humps". 

After the knob of POC2 was turned again (17) the oscilloscope traces (Figure 2c, (17)) showed a 

regularly modulated oscillations at 293.16 MHz and the bias period close to 20 ns (50 MHz). The 

RF spectrum now exhibited multiple peaks. 



 

Figure 2 a, RF comb showing 23
rd

, 24
th

 and 25
th

 harmonics along with their satellites. b,  satellites tuning with 

the help of in-cavity polarisation controller POC2. c, Emergence of the 293.16 MHz pulse train for the 

positions 15, 16, 17 and 18 of the POC2. d, Evolution of the RF spectrum of the 293.16 MHz line for the 

positions 15, 16, 17 and 18 of the POC2.  

Finally, after the last rotation of the knob (18) the modulation disappeared and the regular 

oscillations pattern at the frequency of 293.16 MHz became visible. The RF spectrum now 

showed a narrow resonance line growing up to 60 dB.  In addition to these results, we have 

observed stable and unstable pulse trains at different frequencies as shown in Table 1 and 

Supplementary Information. The tuning between different harmonics was performed by 

adjusting POC2 and the value of the pump power.  

To understand the mechanism of stable self-mode locking along with tunability of harmonic 

mode locking and linewidth narrowing, we have developed a new vector model of EDFLs as 

described in section Methods. Additionally, the results of linear stability analysis are shown in 

Fig.3. As shown in section Methods, birefringence tuned by POC2 causes modulation of Stokes 

parameters along the cavity with an angular frequency equal to the difference between the in-

cavity and polarisation hole burning parts of the birefringence strength. In the same way as for 

the Faraday instability, this spatial modulation is related to the frequency spectrum through the 

a)                                              

c)                                              

d)                                              

b)                                              



linear dispersion relation defined by the eigenvalue problem  and results in the formation of 

satellites for all longitudinal modes with the splitting proportional to the birefringence strength.  

 

Figure 3 Left column, Satellite frequencies for A, B and C lines as a function of the birefringence strength 2β. 

Frequencies are normalized to the fundamental frequency. Right column, Real part of eigenvalues found from 

Equations (1).  Parameter ∆β is accounting for birefringence in an active medium induced by polarisation hole 

burning (details are found in the sections Methods and Supplementary Information).  

The same as in Figure 2b, the frequencies of satellites from the adjacent lines “A” and “C” move 

toward the frequency of line “B” (Figure 3 left column). The mechanism of phase locking is 

similar to the active mode locking where harmonic modulation of the central frequency ω=q at 

the frequency ±∆Ω2 produces sidebands at the frequencies q±∆Ω2 and locks the adjacent modes, 

which in turn lock their adjacent modes etc. Unlike previous scalar models of RNGH instability, 

the uniform distribution of the optical field in the cavity is stable with respect to perturbations at 

the harmonics of the fundamental frequency owing to negative real parts of eigenvalues (Details 

are found in Supplementary Information). The distinguished feature of the vector model is the 

presence of the vector branch of complex eigenvalues with the positive real parts that presents 
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evidence of the satellites emergence (Figure 3 in the top and bottom of right column). The 

interaction of harmonics and satellites beyond the resonance conditions leads to the emergence 

of the beat tone as illustrated in Figure 2c. Thus, unlike the previous experimentally observed 

unstable mode locking due to RNGH instability
22-25

, we have observed stable harmonic mode 

locking at 293.16 MHz, 464.17 MHz and 549.7 MHz. Grudinin and Gray 
18,19

 showed that the 

stabilisation at these frequencies can be caused by strong coupling between the frequency comb 

and transverse acoustic wave excited by this comb through electrostriction effect. It seems likely 

that the synchronisation in the regime of a strong coupling
 
between frequency comb and 

transverse acoustic wave leads to the phase noise suppression taking the form of the linewidth 

narrowing 
26,27

.  

In conclusion, we demonstrate experimentally new vector self-mode locking operation of an 

EDFL. By adjusting the in-cavity polarisation controller and the pump power we were able to 

switch the stable fundamental mode operation at 12.21 MHz to the harmonic mode locked 

operation at 293.16 MHz, 464.17 MHz and 549.7 MHz along with linewidth narrowing from 

hundreds of Hz to a few Hz. To explain stable fundamental mode operation, we developed a new 

vector model which demonstrates a new kind of the vector multimode RNGH instability. At this 

point a resonance between the frequency comb and acoustic wave is excited through the 

electrostriction effect that enforces harmonic mode locking and phase noise suppression taking 

the form of linewidth narrowing. In the future extension of the vector model given in the section 

method, we shall develop a vector model of jitter for mode locked fibre lasers to quantify the 

linewidth narrowing and repetition rate tunability.  

Methods 

Experimental setup. The experimental setup is illustrated in Figure 1a. The cavity includes 15.8 

m of standard telecommunication fibre (SMF28) and 75 cm of Liekki Er80-8/125 gain fibre 

(EDF) with the anomalous dispersion of -20 fs
2
/mm and modal field diameter of 9.5 µm. The 

length of the whole cavity taking in account the physical length of all components was 17 

meters. The pump diode (FOL14xx series with isolator) has the maximum optical power up to 

250 mW, which was measured after the polarization controller POC1, optical isolator (not shown 

in Figure 1a) and wavelength division multiplexer (WDM). A manual polarization controller 

POC1 and an optical isolator for 1560 nm were placed between the diode output and the WDM. 



The isolator between the diode and the laser was used to prevent degradation of the diode power 

during the device operation and to improve the laser diode stability. The LDR1500E driver was 

used to drive the laser diode. The output coupler 80:20 was used to direct the light  out of the 

cavity. In the first experiment, the laser was assembled with an optical isolator with 25 dB 

attenuation. In this configuration it was impossible to obtain periodic pulsations and the output 

exhibited noisy behaviour. As we found, the back propagated wave interacts with the gain fibre 

changing the inverse population and preventing stable operation. After installation of an isolator 

with 51 dB attenuation, the laser was successfully mode locked. The back propagated radiation 

was controlled through the auxiliary port (not shown in Figure 1a) and the level of the 

backscattered power was measured to be -49 dB in comparison with the power measured from 

the port labelled with "OUTPUT C". 

Mode locked operation threshold. The threshold was found to be close to 36 mW of the 

pump power using linear extrapolation of the signal vs pump power curve to zero value of 

the signal power, as illustrated in Figure 1b. When the pump power has the value of 36 mW 

(inset of Figure 1b) a sharp peak appears at 12.21 MHz in the RF spectrum. As illustrated in 

the inset, after the peak becomes visible its width decreases from 4 KHz down to 300 Hz. 

Pulse width. The pulse duration was too large to be measured with an autocorrelator. To 

estimate the pulse parameters, we used an ultrafast photo-detector XPDV232OR with the 

bandwidth of 50 GHz. This detector in turn was connected to DSO-X93204A oscilloscope 

with the bandwidth of 32GHz. The pulse width of 20 ps was obtained using the oscilloscope 

trace and the 
x

xsin
 interpolation software supplied by Agilent. This algorithm gave us the 

effective resolution of 781 fs/point. The pulse energy was estimated to be 1.4 nJ. The time 

bandwidth product (TBWP) was calculated to be 0.5 using the formula
2




cT
K , where T 

is the pulse duration,  is the width of the optical spectrum and  is central optical 

wavelength. Since the TBWP for Gaussian pulse is 0.441, we have assumed that pulses have 

are slightly chirped. 



 Vector model. Evolution of the laser SOPs and population of the first excited level in Er
3+ 

doped active medium was modelled using the following equations derived from the vector theory 

developed by Sergeyev and co-workers in 
28,29

:  

 

 

(1) 

Here time and length are normalised to the round trip  and cavity length respectively; Si 

(i=0,1,2,3) are the Stokes parameters (S0 is the output power, pump and lasing powers are 

normalised to the corresponding saturation powers); α1 is the total absorption of erbium ions at 

the lasing wavelength, α2 is the total insertion losses in cavity, β is the birefringence strength 

(2β=2πL/Lb , Lb is the beat length); δ is the ellipticity of the pump wave, ε=R/Er  is the ratio of 

the round trip time R to the lifetime of erbium ions at the first excited level Er; 
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orthogonal to the direction of the light propagation. This results in an angular distribution of the 

excited ions n() which can be expanded into a Fourier series as follows: 

     .sincos
2 1

2
1

1
0 







 k
k

k
k knkn

n
n                                        (2) 

Unlike more general assumption of the 3D orientation distribution of the dipole orientations,  

Equation (2) allows deriving finite dimension system of the differential equations (1) where only 

n0, n12 and n22 components contribute to the vector dynamics. A linear stability analysis of the 

solution in the case of circularly polarised pump (δ=1), a uniform field ( 0 zS
i

) and a steady 

state ( 0 tS
i

) can be found in Supplementary Information.  Using it, we find three branches 

of eigenstates 
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Here q is the wave number of the longitudinal mode. All details related to numerical calculations 

of eigenvalues are found in Supplementary Information. For branch III, q=23, 24, and 25 (A, B, 

and C lines and satellites), and Ip=10, the particular eigenfrequencies along with real parts of 

eigenvalues vs birefringence strength are shown in Figure 3. As follows from the structure of 

Equations (1), birefringence in the laser cavity comprises two parts, viz. birefringence of the 

passive fibre combined with birefringence induced by the in-cavity polarisation controller ( 

2β=2πL/Lb ) and birefringence caused by polarisation hole burning  in the active fiber ( 

∆β=2α1f2∆/(1+∆
2
) ) 

28,29
. In the experiments we have observed the threshold pump power of 36 

mW.  This value is significantly less than the modulation instability threshold. The modulation 

instability leads to oscillations at frequencies of hundreds GHz 
30

 which were not observed in the 

experiment. This means the approximation where the Kerr nonlinearity and second order 

dispersion are neglected is valid in the context of the qualitative description of the 

experimentally observed vector self-mode locking. The length of the pulses in the experiments 



was estimated to be of 20 ps. It is much longer than the time of transverse relaxation of 160 fs. 

For this reason the dynamics of the medium polarisation also was ignored
22

. 
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