43 research outputs found

    Effect of Charge on the Deposition of Electrostatically Charged Inhalable Aerosol in Lung Model

    Get PDF
    Inhalable drugs are widely used for treating lung diseases such as asthma, emphysema, and cystic fibrosis. The aerosol particles in these inhalable drugs may be charged electrostatically. The deposition of these inhaled therapeutic aerosol particles in the different regions of the lung depends on the particle aerodynamic diameter, electrostatic charge distribution, particulate number density, breathing rate, aerodynamics of the lung, ambient temperature, and relative humidity (RH). The primary mechanisms for lung deposition of inhaled particles are impaction, gravitational settling, diffusion, interception, and electrostatic attraction. To simulate lung deposition, electrostatically charged aerosol particles are introduced through a throat section into a glass bead lung model. The E-SPART analyzer was used to measure aerosol deposition as a function of the particle charge and size. Experiments were carried out to determine the increase in deposition efficiency as a function of the net charge-to-mass ratio (Q/M) of aerosol particles. Using a fairly monodisperse aerosol of 5.0 um count median aerodynamic diameter, it was found that the total deposition efficiency increased from 54% to 91% when Q/M increased from 0.5 to 9.67 |muC/g. The data show that enhanced delivery of the therapeutic aerosol in the lung can be achieved by controlling the electrostatic charge on the inhaled aerosol particles

    Reduction of Dendrite Formations to Improve the Appearance of the Powder Cured Films for Automotive Industry

    Get PDF
    The appearance of powder-coated films is dependent upon powder chemistry and spraying parameters. One of the most important physical factors controlling the powder film appearance is the microdeposition of the powder particles on the grounded substrate. During the electrostatic deposition of powder, the formation of dendrites and agglomerates was observed; these formations have an adverse effect on the final film appearance and their elimination may result in smoother and glossier films. Dendrites are generated due to bipolar charging and inter-particulate electrostatic attractive forces. The corona charging technique is mostly used in industrial powder coating applications. At low corona voltages (- 40 to - 60 kV) a greater degree of bipolar charging was observed compared to that at higher voltages (- 80 to - 100 kV). At the higher voltages, the increase n number of ions produces a more unipolar charging and higher charge-to-mass ratios. As the film builds up, the powder transfer efficiency decreases as the repulsion forces between oncoming charged particles and the already deposited powder layer increase. By controlling the deposition patterns, the final film appearance can be improved. The smoothest films were obtained when the voltage was ramped from - 60 to - 100 kV. Another method to reduce dendrite formations was to deposit powder particles charged unipolarly by first separating them from the oppositely charged ones by using a charge separator

    Electrostatic Microencapsulation of Composite Particulate Materials for Manufacturing and Environmental Applications

    Get PDF
    Electrostatic microencapsulation is a dry coating process where two powders, one containing the fines and the other relatively larger particles, are separately dispersed in air and pre-charged with opposite polarity, using corona charging for electrostatic coagulation. These oppositely charged core and guest particles experience attractive electrostatic forces and generate composite particles. Preliminary experiments of electrostatic microencapsulation were performed using Anionic Exchange Resin (AG 1-X8) as the host particle and Red Toner (Omega 4000) as the guest particles. An electrostatic microencapsulation tower has been designed for generation of composite particles using particles of different particle size distribution

    Twenty-First Century Research Needs in Electrostatic Processes Applied to Industry and Medicine

    Get PDF
    From the early century Nobel Prize winning (1923) experiments with charged oil droplets, resulting in the discovery of the elementary electronic charge by Robert Millikan, to the early 21st century Nobel Prize (2002) awarded to John Fenn for his invention of electrospray ionization mass spectroscopy and its applications to proteomics, electrostatic processes have been successfully applied to many areas of industry and medicine. Generation, transport, deposition, separation, analysis, and control of charged particles involved in the four states of matter: solid, liquid, gas, and plasma are of interest in many industrial and biomedical processes. In this paper, we briefly discuss some of the applications and research needs involving charged particles in industrial and medical applications including: (1) Generation and deposition of unipolarly charged dry powder without the presence of ions or excessive ozone, (2) Control of tribocharging process for consistent and reliable charging, (3) Thin film (less than 25 micrometers) powder coating and Powder coating on insulative surfaces, (4) Fluidization and dispersion of fine powders, (5) Mitigation of Mars dust, (6) Effect of particle charge on the lung deposition of inhaled medical aerosols, (7) Nanoparticle deposition, and (8) Plasma/Corona discharge processes. A brief discussion on the measurements of charged particles and suggestions for research needs are also included

    AN INTEGRATED MODELING APPROACH FOR ASSESSING THE IMPACTS OF A NATURAL GAS-FIRED POWER-PLANT ON SOIL ACIDIFICATION

    No full text
    Environmental impacts of a proposed natural gas-fired power plant was assessed by coupling an atmospheric deposition model with a soil acidification model. Long-term and short-term impacts of atmospheric dispersion and deposition of pollutants, especially NO(x), on the quality of air were estimated within the local scale using a short term dispersion model. The long-term soil response to acid deposition was simulated by a model which predicts the number of years required to reach critical soil pH values

    Assessment of soil acidification due to a natural gas-fired power plant by using two different approaches

    No full text
    Potential soil acidification impacts of a proposed natural gas-fired combined cycle power plant were assessed using an integrated approach coupling an atmospheric deposition model with soil acidification quantification. The deposition model was used to estimate the rates of nitrogen oxide (NOx) deposition on the air-soil boundary. The expected changes in the soil column were then predicted by utilizing mechanistic and experimental methods, and the number of years required to reach critical pH values were predicted using the two methods mentioned above under different rates of acidic deposition. The number of years predicted by the mechanistic modeling approach was lower for all soils exhibiting calcareous character

    Reverse movement and coalescence of water microdroplets in electrohydrodynamic atomization

    No full text
    When a high voltage is applied to a liquid pumped through a needle, charged microdroplets can be formed, which are carried along the electric field lines. This phenomenon is called electrohydrodynamic atomization (EHDA), or simply electrospray. In this work we show that in the case of water, droplets may reverse their paths flying back toward the liquid meniscus, sometimes making contact with it. Such reverse movement is caused by polarization of the water inside the strong electric field. To understand this phenomenon we developed a way to calculate the droplet charge using its trajectory obtained by high-speed imaging. The values found showed that these droplets are charged between 2.5% and 19% of their Rayleigh limit.BT/BiotechnologyApplied Science

    New insights into source and dispersal of Mediterranean S1 tephra, an early Holocene marker horizon erupted at Mt. Erciyes (Turkey)

    No full text
    Highlights • Five Pleistocene and Holocene explosive eruptions of Mt. Erciyes dated. • Holocene Dikkartın and Perikartın pumices chemically equal Mediterranean S1 tephra. • Karagüllü dome eruption identified as the source of a Black Sea cryptotephra. • Eastward dispersal of Dikkartın fall-out consistent with probabilistic modeling. • Southerly S1 tephra occurrence suggests low altitude ash dispersal from Mt. Ericyes. Abstract Deposition of early Holocene Eastern Mediterranean S1 tephra and a Black Sea cryptotephra coincides with cultural transitions in the Fertile Crescent termed the Neolithic Revolution as well as sapropel formation during climate variability of the African humid period, classifying them as paramount regional marker horizons for archaeology as well as paleoclimatology. Their correlations with specific eruptions of the Mt. Erciyes stratovolcanic complex (Central Anatolia) remained inconclusive though. Here, we use zircon double-dating by (U–Th)/He and U–Th disequilibrium methods, major and trace element tephra glass geochemistry, and probabilistic modeling of tephra dispersal in an attempt to characterize all major late Quaternary proximal tephras of Mt. Erciyes, and to correlate them with distal deposits. Furthermore, we discuss contrasting proximal and distal tephra dispersal. Three nearly-coeval rhyolitic satellite domes (Dikkartın, Perikartın, and Karagüllü) erupted at Mt. Erciyes in the early Holocene, and their dome extrusions were all preceded by explosive phases producing pyroclastic material that formed tephra fall and pyroclastic flow deposits. The new eruption age of 9.03 ± 0.55 ka (1σ uncertainty here and elsewhere) for proximal Dikkartın pumice is consistent with 14C-based S1 tephra chronologies in distal locations averaging 8.92 ± 0.03 cal ka BP. Perikartın pyroclastic flow deposits predate S1 tephra by ca. 0.8 ka according to a pair of published 14C ages, and stratigraphically overlie Karagüllü fall-out, here dated to 8.2 ± 1.8 ka. Previously undated proximal tephras of Mt. Erciyes erupted in the Late (85.2 ± 4.9 ka) and Middle Pleistocene (154.5 ± 5.3 ka). S1 tephra glass is chemically similar to that of Dikkartın fall-out, but also indistinguishable from that of Perikartın fall-out. Karagüllü pumice is characterized by a distinct glass chemical composition, which correlates with that of unnamed cryptotephra reported for the southeastern Black Sea instead, where these results call for a re-evaluation of existing age models. Maximum lithic clast size isopleths for proximal Dikkartın fall-out indicate eastward dispersal of a 20 ± 5 km high eruption plume by stratospheric winds, in agreement with results of probabilistic tephra dispersal modeling. This azimuth contrasts with the known distribution of S1 tephra at distal locations that are all south of Mt. Erciyes. Significant tephra occurrences at up to 1300 km distance and orthogonal to prevalent stratospheric wind directions either result from very atypical wind conditions (probability ≪10 %), or are caused by tephra transport by prevailing low altitude winds. Two scenarios are proposed for low altitude transport: eolian reworking of primary fall-out (more likely from the more widespread Dikkartın deposits), or co-ignimbrite ash cloud dispersal (more likely from the Perikartın eruption which predominantly produced pyroclastic flows). Because S1 tephra is chemically indistinguishable from both Dikkartın and Perikartın by major and trace element glass compositions, its exact source and dispersal mechanism remain ambiguous, although existing 14C ages for Perikartın predating those for S1 tephra favor Dikkartın as its source
    corecore