186 research outputs found

    Discrete symmetry's chains and links between integrable equations

    Full text link
    The discrete symmetry's dressing chains of the nonlinear Schrodinger equation (NLS) and Davey-Stewartson equations (DS) are consider. The modified NLS (mNLS) equation and the modified DS (mDS) equations are obtained. The explicitly reversible Backlund auto-transformations for the mNLS and mDS equations are constructed. We demonstrate discrete symmetry's conjugate chains of the KP and DS models. The two-dimensional generalization of the P4 equation are obtained.Comment: 20 page

    Effect of an electric field on nucleation and growth of crystals

    Get PDF
    The effect of the electric field strength on nucleation and growth of the crystals of ammonium halides and alkali metal sulfates has been studied. The optimal electric field strength for NH[4]Cl and NH[4]Br crystals was found to be 15 kV/cm, and for NH[4]I, it equaled 10 kV/cm. No effect of the electric field strength on the crystal growth was found for alkali metal sulfates. This difference is analyzed in terms of the crystal growth thermodynamics. In case, when the electric field is small and the Gibbs energy is of a significant value, the influence of the electric field at the crystal growth is negligible. A method to estimate the critical radius of homogeneous nucleation of the crystal is suggested

    Determination of glass transition temperature for polymers by methods of thermoactivation spectroscopy

    Get PDF
    For rapid determination of glass transition temperature for polymers, we propose a method of thermally stimulated luminescence. The experiments were carried for epoxy polymers dyed and undyed with organic dyes. It is shown that glass transition temperature depends on curing temperature and concentration of the dye. The comparison with the thermogravimetric analysis showed coincidence of the results obtained

    Effect of ultraviolet and x-ray radiation on optical properties of epoxy polymers dyed with organic phosphors

    Get PDF
    Highly purified industrial bisphenol and cycloaliphatic epoxy oligomers of ED-24 and UP-612 brands were used to produce optically transparent products. UV radiation of a low-pressure mercury lamp with 80% of the light energy at 254 nm was used to study photodegradation. X-ray apparatus with 0.7BSV- Ag tube was used as an ionizing radiation source to investigate the effect of X-rays on the spectra of organic dyes in epoxy polymer. The threshold value of the energy generated by ruby laser which indicated the degradation in the test samples recorded by light scattering method was determined to study radiation resistance of epoxy polymers. Basically, all the dyes exhibited high resistance to UV light. The observation of the absorption spectra showed that on average, a third of the dye molecules in the matrix experienced photobleaching within 200 hour exposure. The exception was coumarin 1, which was completely decolourized after 40 hours of exposure. X-ray irradiation of the samples for two hours results in the change in the optical density equivalent to that caused by 40 hour exposure to UV irradiation. However, in the first case, the matrix optical density is proportional to the irradiation time, and in the second case, it remains stable upon further UV irradiation. The comparison of photoaging processes in dyed and undyed epoxy polymers showed that the investigated organic dyes do not have a sensitizing effect on the matrix. The stability of the optical properties of the epoxy matrices exposed to the effects of different factors was found to depend on the nature of epoxy polymer and the technique of its production. The results of these effects are significantly different in the character of the change in the optical density and mechanisms of chemical transformations in polymer

    An Infrared Divergence Problem in the cosmological measure theory and the anthropic reasoning

    Full text link
    An anthropic principle has made it possible to answer the difficult question of why the observable value of cosmological constant (Λ1047\Lambda\sim 10^{-47} GeV4{}^4) is so disconcertingly tiny compared to predicted value of vacuum energy density ρSUSY1012\rho_{SUSY}\sim 10^{12} GeV4{}^4. Unfortunately, there is a darker side to this argument, as it consequently leads to another absurd prediction: that the probability to observe the value Λ=0\Lambda=0 for randomly selected observer exactly equals to 1. We'll call this controversy an infrared divergence problem. It is shown that the IRD prediction can be avoided with the help of a Linde-Vanchurin {\em singular runaway measure} coupled with the calculation of relative Bayesian probabilities by the means of the {\em doomsday argument}. Moreover, it is shown that while the IRD problem occurs for the {\em prediction stage} of value of Λ\Lambda, it disappears at the {\em explanatory stage} when Λ\Lambda has already been measured by the observer.Comment: 9 pages, RevTe

    Gamma-radiation with E gamma 5 MeV detected from Seyfert galaxy 3C120 and region with 1" = 190 deg and b" = 20 deg

    Get PDF
    The observation of the Galaxy anticenter region in gamma-rays with E gamma = 5 / 100 MeV was made by gamma-telescope Natalya-1 in a balloon flight. The flight was performed at the ceiling 5.1 + or - 0.1 g/sq cm, magnetic cutoff being 17 GV. The description of the instrument and the analysis of the experiment conditions are given. The tracks of electron-positron pairs generated by gamma-quanta in the convertors were detected by wire spark chambers. The recorded events were classified manually by an operator using a graphic display into three classes: pairs, single and bad events. The arrival angle of gamma-quanta and their energy for selected gamma-ray events (pairs and singles) were determined through multiple scattering of pair components in the convertors. On the basis of the data obtained the celestial maps were made in gamma-rays for E sub gamma 5 MeV and E gamma 20 MeV energy ranges

    Effect of ultraviolet and x-ray radiation on optical properties of epoxy polymers dyed with organic phosphors

    Get PDF
    Highly purified industrial bisphenol and cycloaliphatic epoxy oligomers of ED-24 and UP-612 brands were used to produce optically transparent products. UV radiation of a low-pressure mercury lamp with 80% of the light energy at 254 nm was used to study photodegradation. X-ray apparatus with 0.7BSV- Ag tube was used as an ionizing radiation source to investigate the effect of X-rays on the spectra of organic dyes in epoxy polymer. The threshold value of the energy generated by ruby laser which indicated the degradation in the test samples recorded by light scattering method was determined to study radiation resistance of epoxy polymers. Basically, all the dyes exhibited high resistance to UV light. The observation of the absorption spectra showed that on average, a third of the dye molecules in the matrix experienced photobleaching within 200 hour exposure. The exception was coumarin 1, which was completely decolourized after 40 hours of exposure. X-ray irradiation of the samples for two hours results in the change in the optical density equivalent to that caused by 40 hour exposure to UV irradiation. However, in the first case, the matrix optical density is proportional to the irradiation time, and in the second case, it remains stable upon further UV irradiation. The comparison of photoaging processes in dyed and undyed epoxy polymers showed that the investigated organic dyes do not have a sensitizing effect on the matrix. The stability of the optical properties of the epoxy matrices exposed to the effects of different factors was found to depend on the nature of epoxy polymer and the technique of its production. The results of these effects are significantly different in the character of the change in the optical density and mechanisms of chemical transformations in polymer

    Thermodynamic models of radiation-induced processes in solids

    Get PDF
    A thermodynamic model is proposed to qualitatively describe the radiation-induced processes in solids: temperature dependence of the X-ray radio luminescence output, dependence of these processes on the excitation density, energy accumulating in a solid under exposure to ionizing radiation and its temperature dependence. The proposed model and the formula derived can be used to develop radiation-resistant and radiation-sensitive materials

    Friedman vs Abel equations: A connection unraveled

    Full text link
    We present an interesting connection between Einstein-Friedmann equations for the models of universe filled with scalar field and the special form of Abel equation of the first kind. This connection works in both ways: first, we show how, knowing the general solution of the Abel equation (corresponding to the given scalar field potential) one can obtain the general solution of the Friedman Equation (and use the former for studying such problems as existence of inflation with exit for particular models). On the other hand, one can invert the procedure and construct the B\"{a}cklund auto-transformations for the Abel equation.Comment: Replaced raw version (with fake abstract and acknowledgments) to a new, revised versio
    corecore