249 research outputs found

    Magnetically-accelerated photo-thermal conversion and energy storage based on bionic porous nanoparticles

    Get PDF
    Recently, the technology of mixing phase change materials with high thermal conductivity fillers was developed, which has allowed thermal energy storage to be implemented in a wide range of industrial technologies and processes. In the present study, a hierarchical bionic porous nano-composite was prepared, which efficiently merged the nanomaterial characteristics of magnetism and high thermal conductivity in order to form a magnetically-accelerated solar-thermal energy storage method. The morphology and thermo-physical properties of materials were analysed. The experimental outcomes of phase change heat transfer demonstrated that the maximum storage efficiency increases by 102.7% when the hierarchical bionic porous structure is used, and a further 27.1% improvement can be achieved with the magnetic field. At the same time, the heat transfer process of energy storage in hierarchical porous composites under external physical fields is explained by simulation. Therefore, this magnetically-accelerated method demonstrated the superior solar-thermal energy storage characteristics within a hierarchical bionic porous structure which is particularly beneficial for the utilisation of solar direct absorption collectors and energy storage technology

    Coordinated Dynamic Bidding in Repeated Second-Price Auctions with Budgets

    Full text link
    In online ad markets, a rising number of advertisers are employing bidding agencies to participate in ad auctions. These agencies are specialized in designing online algorithms and bidding on behalf of their clients. Typically, an agency usually has information on multiple advertisers, so she can potentially coordinate bids to help her clients achieve higher utilities than those under independent bidding. In this paper, we study coordinated online bidding algorithms in repeated second-price auctions with budgets. We propose algorithms that guarantee every client a higher utility than the best she can get under independent bidding. We show that these algorithms achieve maximal coalition welfare and discuss bidders' incentives to misreport their budgets, in symmetric cases. Our proofs combine the techniques of online learning and equilibrium analysis, overcoming the difficulty of competing with a multi-dimensional benchmark. The performance of our algorithms is further evaluated by experiments on both synthetic and real data. To the best of our knowledge, we are the first to consider bidder coordination in online repeated auctions with constraints.Comment: 43 pages, 12 figure

    Influence of EOM sideband modulation noise on space-borne gravitational wave detection

    Full text link
    Clock noise is one of the dominant noises in the space-borne gravitational wave (GW) detection. To suppress this noise, the clock noise-calibrated time-delay-interferometry (TDI) technique is proposed. In this technique, an inter-spacecraft clock tone transfer chain is necessary to obtain the comparison information of the clock noises in two spacecraft, during which an electro-optic-modulator (EOM) is critical and used to modulate the clock noise to the laser phase. Since the EOM sideband modulation process introduces modulation noise, it is significant to put forward the corresponding requirements and assess whether the commercial EOM meets. In this work, based on the typical Michelson TDI algorithm and the fundamental noise requirement of GW detectors, the analytic expression of the modulation noise requirement is strictly derived, which relax the component indicator need compared to the existing commonly used rough assessments. Furthermore, a commercial EOM (iXblue-NIR-10 GHz) is tested, and the experimental results show that it can meet the requirement of the typical GW detection mission LISA in whole scientific bandwidth by taking the optimal combination of the data stream. Even when the displacement measurement accuracy of LISA is improved to 1 pm/ Hz1/2\mathrm{Hz^{1/2}} in the future, it still meets the demand

    Joint Sparsity Pattern Learning Based Channel Estimation for Massive MIMO-OTFS Systems

    Full text link
    We propose a channel estimation scheme based on joint sparsity pattern learning (JSPL) for massive multi-input multi-output (MIMO) orthogonal time-frequency-space (OTFS) modulation aided systems. By exploiting the potential joint sparsity of the delay-Doppler-angle (DDA) domain channel, the channel estimation problem is transformed into a sparse recovery problem. To solve it, we first apply the spike and slab prior model to iteratively estimate the support set of the channel matrix, and a higher-accuracy parameter update rule relying on the identified support set is introduced into the iteration. Then the specific values of the channel elements corresponding to the support set are estimated by the orthogonal matching pursuit (OMP) method. Both our simulation results and analysis demonstrate that the proposed JSPL channel estimation scheme achieves an improved performance over the representative state-of-the-art baseline schemes, despite its reduced pilot overhead.Comment: 6 pages, 6 figures, accepted to appear on IEEE Transactions on Vehicular Technology, Mar. 202

    DEM Study of Wet Cohesive Particles in the Presence of Liquid Bridges in a Gas Fluidized Bed

    Get PDF
    A modified discrete element method (DEM) was constructed by compositing an additional liquid-bridge module into the traditional soft-sphere interaction model. Simulations of particles with and without liquid bridges are conducted in a bubbling fluidized bed. The geometry of the simulated bed is the same as the one in Müller’s experiment (Müller et al., 2008). A comparison between the dry and the wet particular systems is carried out on the bubble behavior, the bed fluctuation, and the mixing process. The bubble in the dry system possesses a regular round shape and falling of scattered particles exists while the bubble boundary of the wet particles becomes rough with branches of agglomerates stretching into it. The mixing of the dry system is quicker than that of the wet system. Several interparticle liquid contents are applied in this work to find their influence on the kinetic characteristic of the wet particle flow. With an increase of liquid content, the mixing process costs more time to be completed. Symmetrical profiles of the velocity and granular temperature are found for two low liquid contents (0.001% and 0.01%), while it is antisymmetrical for the highest liquid content (0.1%)
    • …
    corecore