39 research outputs found

    Network Community Detection On Small Quantum Computers

    Full text link
    In recent years a number of quantum computing devices with small numbers of qubits became available. We present a hybrid quantum local search (QLS) approach that combines a classical machine and a small quantum device to solve problems of practical size. The proposed approach is applied to the network community detection problem. QLS is hardware-agnostic and easily extendable to new quantum computing devices as they become available. We demonstrate it to solve the 2-community detection problem on graphs of size up to 410 vertices using the 16-qubit IBM quantum computer and D-Wave 2000Q, and compare their performance with the optimal solutions. Our results demonstrate that QLS perform similarly in terms of quality of the solution and the number of iterations to convergence on both types of quantum computers and it is capable of achieving results comparable to state-of-the-art solvers in terms of quality of the solution including reaching the optimal solutions

    Fitness of Spontaneous Rifampicin-Resistant Staphylococcus aureus Isolates in a Biofilm Environment

    Get PDF
    Biofilms of S. aureus accumulate cells resistant to the antibiotic rifampicin. We show here that the accumulation of rifampicin resistant mutants (RifR) in biofilms is not equable but rather is a local event, suggesting that the growth of a few locally emerged mutants is responsible for this. Competition assays demonstrated that, compared to wild-type bacteria, the isolated RifR mutants have a growth advantage in biofilms, but not in planktonic culture. To gain insight into the mechanism of the growth advantage, we tested the involvement of the two-component systems (TCS) that sense and respond to environmental changes. We found that a deletion of SrrAB or NreBC has a drastic effect on the growth advantage of RifR mutants, suggesting the importance of oxygen/respiration responses. All six of the RifR isolates tested showed increased resistance to at least one of the common stresses found in the biofilm environment (i.e., oxidative, nitric acid, and organic acid stress). The RifR mutants also had a growth advantage in a biofilm flow model, which highlights the physiological relevance of our findings

    Identification of nucleoid associated proteins (NAPs) under oxidative stress in Staphylococcus aureus

    Get PDF
    BackgroundBacterial nucleoid consists of genome DNA, RNA, and hundreds of nucleoid-associated proteins (NAPs). Escherichia coli nucleoid is compacted towards the stationary phase, replacing most log-phase NAPs with the major stationary-phase nucleoid protein, Dps. In contrast, Staphylococcus aureus nucleoid sustains the fiber structures throughout the growth. Instead, the Dps homologue, MrgA, expresses under oxidative stress conditions to clump the nucleoid, but the composition of the clumped nucleoid was elusive.ResultsThe staphylococcal nucleoid under oxidative stress was isolated by sucrose gradient centrifugation, and the proteins were analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). We identified 299 proteins in the nucleoid under oxidative stress, including 113 csNAPs (contaminant-subtracted NAPs). Comparison with the previously identified csNAPs in log- and stationary phase indicated that one fifth of the csNAPs under oxidative stress were the constitutive nucleoid components; importantly, several factors including HU, SarA, FabZ, and ribosomes were sustained under oxidative stress. Some factors (e.g. SA1663 and SA0092/SA0093) with unknown functions were included in the csNAPs list specifically under oxidative stress condition.ConclusionNucleoid constitutively holds Hu, SarA, FabG, and ribosomal proteins even under the oxidative stress, reflecting the active functions of the clumped nucleoid, unlikely to the dormant E. coli nucleoid compacted in the stationary phase or starvation

    Multilevel Combinatorial Optimization Across Quantum Architectures

    Get PDF
    Emerging quantum processors provide an opportunity to explore new approaches for solving traditional problems in the Post Moore\u27s law supercomputing era. However, the limited number of qubits makes it infeasible to tackle massive real-world datasets directly in the near future, leading to new challenges in utilizing these quantum processors for practical purposes. Hybrid quantum-classical algorithms that leverage both quantum and classical types of devices are considered as one of the main strategies to apply quantum computing to large-scale problems. In this paper, we advocate the use of multilevel frameworks for combinatorial optimization as a promising general paradigm for designing hybrid quantum-classical algorithms. In order to demonstrate this approach, we apply this method to two well-known combinatorial optimization problems, namely, the Graph Partitioning Problem, and the Community Detection Problem. We develop hybrid multilevel solvers with quantum local search on D-Wave\u27s quantum annealer and IBM\u27s gate-model based quantum processor. We carry out experiments on graphs that are orders of magnitudes larger than the current quantum hardware size and observe results comparable to state-of-the-art solvers

    Multilevel Combinatorial Optimization Across Quantum Architectures

    Get PDF
    Emerging quantum processors provide an opportunity to explore new approaches for solving traditional problems in the post Moore's law supercomputing era. However, the limited number of qubits makes it infeasible to tackle massive real-world datasets directly in the near future, leading to new challenges in utilizing these quantum processors for practical purposes. Hybrid quantum-classical algorithms that leverage both quantum and classical types of devices are considered as one of the main strategies to apply quantum computing to large-scale problems. In this paper, we advocate the use of multilevel frameworks for combinatorial optimization as a promising general paradigm for designing hybrid quantum-classical algorithms. In order to demonstrate this approach, we apply this method to two well-known combinatorial optimization problems, namely, the Graph Partitioning Problem, and the Community Detection Problem. We develop hybrid multilevel solvers with quantum local search on D-Wave's quantum annealer and IBM's gate-model based quantum processor. We carry out experiments on graphs that are orders of magnitudes larger than the current quantum hardware size, and we observe results comparable to state-of-the-art solvers in terms of quality of the solution

    Fitness of Spontaneous Rifampicin-Resistant Staphylococcus aureus Isolates in a Biofilm Environment

    Get PDF
    Biofilms of S. aureus accumulate cells resistant to the antibiotic rifampicin. We showhere that the accumulation of rifampicin resistant mutants (RifR) in biofilms is notequable but rather is a local event, suggesting that the growth of a few locally emergedmutants is responsible for this. Competition assays demonstrated that, compared towild-type bacteria, the isolated RifR mutants have a growth advantage in biofilms, butnot in planktonic culture. To gain insight into the mechanism of the growth advantage,we tested the involvement of the two-component systems (TCS) that sense andrespond to environmental changes. We found that a deletion of SrrAB or NreBC hasa drastic effect on the growth advantage of RifR mutants, suggesting the importanceof oxygen/respiration responses. All six of the RifR isolates tested showed increasedresistance to at least one of the common stresses found in the biofilm environment (i.e.,oxidative, nitric acid, and organic acid stress). The RifR mutants also had a growthadvantage in a biofilm flow model, which highlights the physiological relevance ofour findings

    Proteomic Analyses of Nucleoid-Associated Proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus

    Get PDF
    Background: The bacterial nucleoid contains several hundred kinds of nucleoid-associated proteins (NAPs), which play critical roles in genome functions such as transcription and replication. Several NAPs, such as Hu and H-NS in Escherichia coli, have so far been identified. Methodology/Principal Findings: Log- and stationary-phase cells of E. coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus were lysed in spermidine solutions. Nucleoids were collected by sucrose gradient centrifugation, and their protein constituents analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Over 200 proteins were identified in each species. Envelope and soluble protein fractions were also identified. By using these data sets, we obtained lists of contaminant-subtracted proteins enriched in the nucleoid fractions (csNAP lists). The lists do not cover all of the NAPs, but included Hu regardless of the growth phases and species. In addition, the csNAP lists of each species suggested that the bacterial nucleoid is equipped with the species-specific set of global regulators, oxidationreduction enzymes, and fatty acid synthases. This implies bacteria individually developed nucleoid associated proteins toward obtaining similar characteristics. Conclusions/Significance: Ours is the first study to reveal hundreds of NAPs in the bacterial nucleoid, and the obtained data set enabled us to overview some important features of the nucleoid. Several implications obtained from the presen

    Re-emergence of dengue, chikungunya, and Zika viruses in 2021 after a 10-year gap in Gabon

    Get PDF
    Mosquito-borne viral infections are a major concern in endemic areas, such as Africa. Although outbreaks have been reported throughout Africa, only a few surveillance studies have been conducted in Gabon since the outbreaks of dengue virus (DENV) and chikungunya virus (CHIKV) in 2010. Therefore, the current situation is unknown. This study aimed to investigate the presence of arboviruses, especially DENV (serotypes 1–4), CHIKV, and Zika virus (ZIKV), in Gabon, Central Africa. Between 2020 and 2021, we collected 1060 serum samples from febrile patients and screened them against viruses using reverse transcription-quantitative PCR. We detected two DENV serotypes 1 (DENV-1), one CHIKV, and one ZIKV, and subsequently analyzed the genome sequences. To determine the genetic diversity and transmission route of the viruses, phylogenetic analysis was performed using complete or partial genome sequences. The DENV-1 and CHIKV strains detected in this study were closely related to the previous Gabonese strains, whereas the recent ZIKV strain was genetically different from a strain detected in 2007 in Gabon. This study provides new genomic information on DENV-1, CHIKV, and ZIKV that were detected in Gabon and insight into the circulation of the viruses in the country and their introduction from neighboring African countries

    Long-term validation of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of SARS-CoV-2 from March 2020 to October 2021 in Central Africa, Gabon

    Get PDF
    Background: Despite the development of several methods for diagnosing COVID-19, long-term validation of such methods remains limited. In the early phase of the COVID-19 pandemic, we developed a rapid and sensitive diagnostic method based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) methodology, which is suitable for point-of-care application or for use in resource-limited settings to detect SARS-CoV-2. To assess the applicability of the RT-LAMP assay technique to resource-limited regions, such as rural areas in Africa, and to verify the usability of the method against various SARS-CoV-2 variants, the method was validated using clinical samples collected longitudinally during the pandemic.Methodology/Principal findings: First, the sensitivity of the RT-LAMP assay for detecting 10 SARS-CoV-2 variants was evaluated using viral RNA samples extracted from cell culture with a portable battery-supported device, resulting in the successful detection of 20–50 copies of the viral genome within 15 min, regardless of the variant. COVID-19 positive samples collected in Gabon between March 2020 and October 2021 were used to evaluate the sensitivity of the assay and to calculate the copy number of the SARS-CoV-2 genome. More than 292 copies of the viral genome were detected with 100% probability within 15 min in almost all tests.Conclusions: This long-term validation study clearly demonstrated the applicability of the RT-LAMP assay for the clinical diagnosis of COVID-19 in resource-limited settings of Africa, such as rural areas in Gabon. The results show the potential of the assay as a promising COVID-19 diagnostic method, especially in rural and remote regions located far from the official diagnosis facilities in urban or semi-urban areas
    corecore