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Multilevel Combinatorial Optimization AcrossQuantum Architectures

HAYATO USHIJIMA-MWESIGWA∗†‡, Fujitsu Laboratories of America, Inc.

RUSLAN SHAYDULIN∗†, School of Computing, Clemson University

CHRISTIAN F. A. NEGRE, Theoretical Division, Los Alamos National Laboratory

SUSAN M. MNISZEWSKI, Computer, Computational, & Statistical Sciences Division, Los Alamos National

Laboratory
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ILYA SAFRO†, School of Computing, Clemson University

Emerging quantum processors provide an opportunity to explore new approaches for solving traditional problems in the Post Moore’s

law supercomputing era. However, the limited number of qubits makes it infeasible to tackle massive real-world datasets directly in

the near future, leading to new challenges in utilizing these quantum processors for practical purposes. Hybrid quantum-classical

algorithms that leverage both quantum and classical types of devices are considered as one of the main strategies to apply quantum

computing to large-scale problems. In this paper, we advocate the use of multilevel frameworks for combinatorial optimization as a

promising general paradigm for designing hybrid quantum-classical algorithms. In order to demonstrate this approach, we apply

this method to two well-known combinatorial optimization problems, namely, the Graph Partitioning Problem, and the Community

Detection Problem. We develop hybrid multilevel solvers with quantum local search on D-Wave’s quantum annealer and IBM’s

gate-model based quantum processor. We carry out experiments on graphs that are orders of magnitudes larger than the current

quantum hardware size and observe results comparable to state-of-the-art solvers.

Reproducibility: Our code and data are available at [1]

CCS Concepts: • Mathematics of computing → Graph algorithms; Combinatorial optimization; • Hardware → Quantum
computation.

Additional Key Words and Phrases: NISQ, Quantum Annealing, Graph Partitioning, Modularity, Community Detection

1 INTRODUCTION

Across different domains, computational optimization problems that model large-scale complex systems often introduce

a major obstacle to solvers even if tackled with high-performance computing systems. There are several reasons for this,

including but not limited to a large number of variables and even larger number of interactions, and dimensionality

required to describe each variable or interaction, and time slices. The combinatorial and mixed integer optimization

problems introduce additional layers of complexity with integer variables often making the problem NP-hard (e.g., in

cases of non-linearity and non-convexity). A common practical approach to solve these problems is to use iterative
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2 Ushijima-Mwesigwa and Shaydulin, et al.

methods. The iterative methods, while being composed with completely different algorithmic principles, share a common

property: several fast improvement iterations followed by a long tail of slow improvement iterations [27, 63]. Typically,

in such iterative algorithms, solving a large-scale system with respect to the first-order interaction laws per iteration

advances the solution towards a local attraction basin at each iteration, which often appears to be false with respect

to the global optimal solution. In other words, local methods tend to converge to a false local optimum, which often

corresponds to the solution of lower quality than the true global optimum [23]. Moreover, in some cases, another

problem may exist within each iteration – the algorithms used to solve them are not necessarily exact. To accelerate the

solvers at each iteration various heuristics, parallelization-friendly methods, and ad-hoc tricks are employed, which

often reduce the quality of the solution.

In this paper, we take steps towards building more robust solvers for mid- to large-scale combinatorial optimization

problems by fusing two areas whose simultaneous application is only beginning to be explored, namely, quantum

computing and multiscale methods. Recent advances in quantum computing provide a new approach for algorithm

development for many combinatorial optimization problems. However, Noisy Intermediate Scale Quantum (NISQ)

devices are widely expected to be limited to a few hundred, and for certain sparse architectures up to a few thousands

qubits. The current state of quantum computing theory and engineering suggests moderately optimistic expectations.

In particular, it is believed that in the near future, we will witness relatively robust architectures with much less noise.

This would allow algorithms like the Quantum Approximate Optimization Algorithm (QAOA) and Quantum Annealing

(QA) to be run on hardware with limited error correction. Given the realistic level of precision and, in the case of

QAOA, ansatz depth, these algorithms are prime candidates for demonstrating Quantum Advantage, that is solving a

computationally hard problem (such as NP-hard) faster than classical state-of-the-art algorithms. Such algorithms are

our first building block.

The multiscale optimization method is our second building block. These methods have been developed to cope

with large-scale problems by introducing an approach to avoid entering false local attraction basins (local optima), a

complementary method to stochastic and multi-start strategies that help to escape it if trapped. Because of historical

reasons, on graph problems, they have been termed multilevel (rather than multiscale), which we will use here. The

multilevel (or multiscale) methods have a long history of breakthrough results in many different optimization problems

[10, 13, 16, 18, 20, 25, 31, 32, 43, 44, 46–49, 52, 53] and have been implemented on a variety of hardware architectures.

The success of multilevel methods for optimization problems supports our optimism about proposed ideas.

There is no unique prescription on how to design multilevel algorithms, but the main idea behind them is to “think

globally while acting locally” on a hierarchy of coarse representations of the original large-scale optimization problem. A

multilevel algorithm therefore begins by constructing such a hierarchy of progressively smaller (coarser) representations

of the original problem. The goal of the next coarser level in this hierarchy is to approximate the current level problem

with a coarser one that has fewer degrees of freedom and thus can be solved more effectively. When the coarse problem

is solved, its solution is projected back to the finer level and further refined, a stage that is called uncoarsening. As a

result of such a strategy, the multilevel framework is often able to significantly improve the running time and solution

quality of optimization methods. The quality of multilevel algorithms in large part depends on that of the optimization

solvers applied at all stages of the multilevel framework. In many cases, these locally acting optimization solvers are

either heuristics that get stuck in a local optimum or exact solvers applied on a small number of variables (i.e., on

subproblems). In both cases, the quality of a global solution can significantly suffer depending on the quality of the

solution from the local solver. The optimization algorithms running on the NISQ devices that may replace such local
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Multilevel Combinatorial Optimization Across Quantum Architectures 3

solvers are expected to be a critical missing component to achieve a game changing breakthrough in multilevel methods

for combinatorial optimization.

In this paper, we introduce Multilevel Quantum Local Search (ML-QLS), which uses an iterative refinement scheme

on NISQ devices within a multilevel framework. ML-QLS extends the Quantum Local Search (QLS) [55, 56] approach to

solve larger problems. This work builds on early results using a multilevel framework and the D-Wave quantumAnnealer

for the Graph Partitioning Problem [61]. We demonstrate the general approach of solving combinatorial optimization

problems with NISQ devices in a multilevel framework on two well-known problems as our use cases. In particular, we

solve the Graph Partitioning Problem and the Community Detection Problem on graphs up to approximately 29, 000

nodes using subproblem sizes of 20 and 64 that map onto NISQ devices such as IBM Q Poughkeepsie (20 qubits) and

D-Wave 2000Q (∼2048 qubits). Such graphs are orders of magnitude larger than those solved by state-of-the-art hybrid

quantum-classical methods. To implement this approach, we develop a novel efficient subproblem formulation method.

In contrast, some of the authors of this paper have previously developed quantum and quantum-classical algorithms

for the Graph Partitioning Problem and the Community Detection Problem for multiple parts (> 2) [33, 60]. These did

not use a multilevel approach, instead an all at once or concurrent approach was employed.

The rest of paper is organized as follows. In Section 2, we discuss the relevant background on quantum optimization,

multilevel methods, and define the problems. In Sections 3 and 4, we discuss the hybrid quantum-classical multilevel

algorithm and computational results, respectively. A discussion of the outlook and important open problems that

represent major future research directions are presented in Section 5.

2 BACKGROUND

Themethods proposed and implemented in this work aim to solve large graph problems by integrating NISQ optimization

algorithms into a multilevel scheme. In this section, we provide a brief introduction into all three components: target

graph problems (Sec. 2.1), quantum optimization (Sec. 2.2) and multilevel methods (Sec. 2.3)

Many optimization problems discussed in this work are posed in Ising form. The Ising model is a common math-

ematical abstraction to represent the energy of n discrete spin variables σi ∈ {−1, 1}, 1 ≤ i ≤ n, and interactions Ji j

between σi and σj . For each spin variable σi , a local field hi is specified. The energy of a configuration σ is given by the

Hamiltonian function:

H (σ ) =
∑
i, j

Ji jσiσj +
∑
i
hiσi , σi ∈ {−1, 1}. (1)

An equivalent mathematical formulation is the Quadratic Unconstrained Binary Optimization (QUBO) problem. The

objective of a QUBO problem is to minimize (or maximize) the following function:

H (x) =
∑
i<j

Qi jxix j +
∑
i
Qiixi , x ∈ {0, 1}.

2.1 Problem Definitions

Let G = (V ,E) be an undirected graph with vertex set V and edge set E. We denote by n andm the numbers of nodes

and edges, respectively. For each node i , define vi ∈ R as the volume of node i and Ai j ∈ R as the positive weight of

edge (i, j). For a fixed integer k , the Graph Partitioning Problem is to find a partitionV1, . . . ,Vk of the vertex setV into k

parts with equal total node volume such that the total weight of cut edges is minimized. A cut edge is defined as an edge

whose end points are in different partitions. A requirement of equal total sizes of Vi for all i is sometimes referred as
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4 Ushijima-Mwesigwa and Shaydulin, et al.

perfectly balanced graph partitioning, otherwise an imbalancing parameter is usually introduced to allow imbalanced

partitions [12]. However, in this work we deal with perfect balancing constraints and limit the number of parts to k = 2.

In this case we can write the GP problem as the following quadratic program

max sTAs

s.t.

n∑
i=1

visi = 0

si ∈ {−1, 1}, i = 1, . . . ,n,

(2)

which, as shown in [60], can be reformulated into the following Ising model,

max sT (βA − αvvT )s

s.t. si ∈ {−1, 1}, i = 1, . . . ,n,
(3)

for some constants α , β > 0, where v is a column vector of volumes such that (v)i = vi .
Maximization of modularity is a famous problem in network science where the goal is to find communities in

a network through node clustering (also known as modularity clustering) [34]. For the graph G, the problem of

Modularity Maximization is to find a partitioning of the vertex set into one or more parts (communities) that maximizes

the modularity metric. The modularity matrix is a symmetric matrix given by

Bi j = Ai j −
kikj

2|E | , (4)

where ki is the weighted degree of node i , namely, ki =
∑
j Ai j . Whereas the modularity is typically defined on

unweighted graphs, within the multilevel framework, due to the coarsening of nodes, we primarily work with weighted

graphs. It can equivalently be written in matrix-vector notation as

B = A − 1

2|E |kk
T

(5)

where k is a vector of weighted degrees of the nodes in the graph. For up to 2 communities, theModularity Maximization

Problem, also referred to as the Community Detection Problem, can be written in Ising form as follows:

max

1

4|E | s
T
(
A − 1

2|E |kk
T
)
s

s.t. si ∈ {−1, 1}, i = 1, . . . ,n

(6)

where the objective value of equation 6, for a given assignment of resulting communities, is referred to as themodularity.

For more than 2 communities, the Ising formulation of the Community Detection Problem is given in [33].

Note that the above formulation of Modularity Maximization can be viewed as the Graph Partitioning Problem in

the Ising model given in equation (3) where the volume of a node is defined as the weighted degree and the penalty

constants β = 1,α = 1

2 |E | . We exploit this deep duality between the two problems in our implementation.

2.2 Optimization on NISQ devices

In recent years we have seen a number of advances in quantum optimization algorithms that can be run on NISQ

devices. Two most prominent ones are the Quantum Approximate Optimization Algorithm (QAOA) and Quantum

Annealing (QA), which are inspired by the adiabatic theorem. There are many formulations of the adiabatic theorem

(see [6] for a comprehensive review), but all of them stem from the adiabatic approximation formulated by Kato in
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Multilevel Combinatorial Optimization Across Quantum Architectures 5

1950 [26]. Adiabatic approximation states, roughly, that a system prepared in an eigenstate (e.g. a ground state) of

some time-dependent Hamiltonian H (t) will remain in the corresponding eigenstate
1
provided that H (t) is varied

“slowly enough”. The requirement on the evolution time scales as O(1/∆2) in the worst case [15], where ∆ is the

minimum eigengap between ground and first excited state of H (t). Adiabatic Quantum Computation (AQC) is quantum

Merlin-Arthur (QMA)-complete [6] and is equivalent to gate-based universal quantum computation.

Quantum Annealing is a special case of AQC limited to stochastic Hamiltonians The transverse field Hamiltonian

HM =
∑
i
σxi (7)

is used as the initial Hamiltonian. The final Hamiltonian is a classical Ising model Hamiltonian with the ground state

encoding the solution of the original problem:

HC =
∑
i j

Ji jsisj +
∑
i
hisi , si ∈ {−1,+1}.

The evolution of the system starts in the ground state of HM and it is described by a time-dependent Hamiltonian

H (t) = t

T
HC + (1 −

t

T
)HM , t ∈ (0,T ). (8)

QAOA extends the logic of AQC to gate-model quantum computers and can be interpreted as a discrete approximation

of the continuous QA schedule, performed by applying two alternating operators:

W (βk ) = e−i βkHM
and V (γk ) = e−iγkHC .

W (βk ) corresponds to evolving the system with Hamiltonian HM for a period of time βk and V (γk ) corresponds to
evolving HC for time γk . Similarly to QA, the evolution begins in the ground state of HM , namely |+⟩⊗n . Alternating
operators are applied to produce the state:

|ψ (β,γ )⟩ = e−i βpHM e−iγpHC . . .e−i β1HM e−iγ1HC |+⟩⊗n = U (β,γ ) |+⟩⊗n . (9)

An alternative implementation was proposed, inspired by the success of the Variational Quantum Eigensolver

(VQE) [41]. A variational implementation of QAOA combines an ansatzU (β,γ ) (that can be different from the alternating

operator one described above) and a classical optimizer. A commonly used ansatz is a hardware-efficient ansatz [24],

consisting of alternating layers of entangling and rotation gates. The algorithm starts by preparing a trial state by

applying the parameterized gates to some initial state: |ψ (β,γ )⟩ = U (β,γ ) |+⟩⊗n . In the next step, the state |ψ (β,γ )⟩
is measured and the classical optimization algorithm uses the result of the measurement to choose the next set of

parameters β,γ . The goal of the classical optimization is to find the parameters β,γ corresponding to the optimal

QAOA “schedule”, i.e. the schedule that produces the ground state of the problem Hamiltonian HC :

β∗,γ∗ = argmin

β,γ
⟨ψ (β,γ )|HC |ψ (β,γ )⟩ . (10)

Both QA and QAOA have been successfully implemented in hardware by a number of companies, universities and

national laboratories [5, 14, 35, 37, 38, 42].

1
A note on terminology: a Hamiltonian H is a Hermitian operator. The spectrum of H corresponds to the potential outcomes if one was to measure the

energy of the system described by H . |ψ ⟩ is an eigenstate of a system described by Hamiltonian H with energy λ ∈ R if H |ψ ⟩ = λ |ψ ⟩. In other words,

|ψ ⟩ is an eigenvector of H with real eigenvalue λ.
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6 Ushijima-Mwesigwa and Shaydulin, et al.

2.3 Multilevel Combinatorial Optimization

The goal of the multilevel approach for optimization problems on graphs is to create a hierarchy of coarsened graphsG0,

G1, ... ,Gk in such a way that the next coarser graphGi+1 “approximates” some properties ofGi (that are directly relevant

to the optimization problem of interest) but with fewer degrees of freedom. After constructing such a hierarchy, the

coarsening is followed by solving the problem on Gk as best as we can (preferably exactly) do and finally uncoarsening

the solution back to G0 through gradual refinement at all levels of the hierarchy, with a refined solution at level i + 1

serving as the initial solution at level i . The entire coarsening-uncoarsening process is called a V-cycle. There are other

variations of hierarchy levels’ coarsening-uncoarsening order, e.g., W- and Full cycles [11]. Fig. 1 presents an outline of

a V-cycle.

Typically, when solving problems on graphs in which nodes represent the optimization variables (such as those in

the partitioning and Community Detection), having fewer degrees of freedom implies a decreased number of nodes in

each next coarser graph |V0 | > |V1 | > |V2 | > ... > |Vk |.2 With a smaller number of variables at each level, one can use

more sophisticated algorithms at each level. However, it is still not sufficient to solve the original problem as a whole

until the coarsening reaches the coarsest level. As a result, at each level, the actual solution is produced by a refinement.

Refinement is typically implemented with a decomposition method that uses a previous iteration or a coarser level

solution as an initial guess. The multilevel algorithms rely heavily [64] on the quality of refinement solvers for small

and local subproblems at all levels of coarseness. Thus, the most straightforward way to use NISQ devices in multilevel

frameworks is to iteratively apply them as local solvers to refine a solution inherited from the coarse level. Because the

refinement is executed at all levels of coarseness, it is clear that even a small improvement of a solution at the coarse level
2
Note that this does not necessarily imply |E0 | > |E1 | > |E2 | > ... > |Ek |

Coarsening Uncoarsening

Level 0
Original Graph

Level 1
Coarse Graph

Level 2
Coarsest 
Graph

1. Find similarities between 
nodes 

2. Derive the restriction 
operator that will ensure good 
interpolation at uncoarsening

3. Create coarse nodes. Repeat steps 1 and 2.

4. Create coarse variables. Do 
not coarsen further if the 
problem fully fits on a NISQ 
device 5. Solve coarse problem on 

the NISQ device

6. Interpolate solution Si from Level 2 
into initial solution at Level 1

7. Refine the interpolated 
solution by solving 
subproblems on a NISQ device

6. Interpolate solution Si from Level 1 
into initial solution at Level 0

8. Refine the interpolated 
solution by solving 
subproblems on a NISQ device

Fig. 1. V-cycle for a graph problem. First, the problem is iteratively coarsened (left). Second, the coarse problem is solved using a NISQ
optimization solver (bottom). Finally, the problem is iteratively uncoarsened and the solution is refined using a NISQ solver (right).
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may cause a major improvement at the finest scale. Typically, this is the most time-consuming stage of the multilevel

process which is expected to be fundamentally better if improved by NISQ devices. Most refinement solvers in multilevel

frameworks rely on fast but low-quality heuristics, rather than on the ability to compute an optimal solution. Moreover,

in many existing solvers, the number of variables in such local subproblems is comparable with or smaller than the the

size of the problems that can be directly embedded on the NISQ devices (see examples in [20, 28, 31]), making them a

perfect target for NISQ optimization algorithms. In most multilevel/multiscale/multigrid-based optimization solvers, a

refinement consists of covering the domain (or all variables) with small subsets of variables (i.e., small subproblems)

such that solving a small local problem on a subset improves the global solution for the current level.

Multilevel Graph Partitioning and Community Detection algorithms are examples of the most successful applications

of multilevel algorithms for large graphs, achieving excellent time/quality performance [12]. In this paper, we use the

simplest version of coarsening (in order to focus on the hybrid quantum-classical refinement) in which the edges of the

fine level graph are collapsed and create coarse level vertices by merging the fine level ones. There are several classes of

refinement for both problems but in all of them, at each step a small subset of nodes (or even a singleton) is reassigned

with partition (or cluster) that either better optimizes the objective or improves constraints. Some variants of stochastic

extensions also exist.

3 METHODS

An iterative improvement scheme is a common approach for solving large scale problems with NISQ devices. Tradi-

tionally, this is done by formulating the entire problem in the Ising model or as a QUBO and then solving it using

hybrid quantum-classical algorithms (see, for example, "qbsolv" from D-Wave systems [8]). These methods decompose

the large QUBO into smaller sub-QUBOs or decrease the number of degrees of freedom to fit the subproblem on the

hardware (for example, using a multilevel scheme), and iteratively improve the global solution by solving the small

subproblems (sub-QUBOs). One of the main limitations of this approach is the size and density of the original QUBO.

For example, in the graph partitioning formulation given by equation 3, the term vv
T
leads to the formulation of a

completely dense n×n QUBO matrix regardless of whether or not the original graph was sparse. Storing and processing

this dense matrix can easily make this method prohibitively computationally expensive even for moderately sized

problems. In our implementation of Quantum Local Search (QLS) [56] we circumvent this limitation by developing a

novel subproblem formulation of the Graph Partitioning Problem and Modularity Maximization as a QUBO that does

not require formulating the entire QUBO.

Another concern is the effectiveness of selection criteria of candidate variables (or nodes) to be included in each

subproblem. A common metric used in selecting whether or not a variable is to be included in the subproblem is whether

or not changing the variable value would reduce (increase) the objective value for a minimization (maximization)

problem. Thus, since computing the change in objective value for a small change in the solution is performed multiple

times, it is important to ensure that this computation is efficient. We derive a novel efficient way to compute the change

in the objective value of the entire QUBO also without formulating the entire QUBO and thus provide an efficient

refinement scheme using current NISQ devices.

We begin by introducing an efficient QUBO subproblem formulation for the Graph Partitioning Problem, and the

Community Detection Problem. Then we present an efficient way to compute the gain and change in the objective of

the entire QUBO. Finally, we put it all together and outline our algorithm.

Manuscript submitted to ACM



8 Ushijima-Mwesigwa and Shaydulin, et al.

3.1 QUBO formulation for subproblems

LetM be an n × n symmetric matrix that represents the QUBO for a large scale problem such that it is prohibitively

expensive to either generate or storeM . However, for QLS we need to generate constant-size sub-QUBOs ofM which

in turn represent subproblems of the original problem. In order to generate a sub-QUBO, let k be the size of the desired

sub-QUBO. In other words, the sub-QUBO will have k variables and n − k fixed variables that remain invariant for this

specific sub-QUBO. We refer to the k variables as free variables. Without loss of generality, let the the first k variables of

s be the free variables, then we write s as

s =

[
sv
sf

]
,

where sv represents the k free variable terms and sf represents the n − k fixed terms. In the next step, M can be

represented using block form

M =



Mvv Mvf

MT
vf Mf f


(11)

such thatMvv is a k × k matrix. Next, we can write sTMs as

sTMs = sTvMvv sv + sTv (2Mvf sf ) + sTf Mf f sf (12)

Since sf are fixed values, we have sTf Mf f sf as a constant thus

min sTMs = min sTvMvv sv + sTv (2Mvf sf ) (13)

From equation (11), we have

vv
T =



vvv
T
v vvv

T
f

vf v
T
v vf v

T
f


(14)

Therefore, from equation (13), we have

min sTvvT s = min sTvvvv
T
v sv + 2s

T
vvvv

T
f sf (15)

The formulation in (15) is particularly important because it shows that the matrix vv
T
does not need to be explicitly

created at each iteration during refinement. This is a crucial observation because vv
T
is a completely dense matrix.

As described in Sec. 2.1, the Community Detection Problem is given by

max

1

4|E | s
T
(
A − 1

2|E |kk
T
)
s (16)
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or

min sT
(

1

2|E |kk
T −A

)
s (17)

and the Graph Partitioning Problem is given by

min sT
(
αvvT − βA

)
s. (18)

In the above formulation, modularity clustering can be viewed as the Graph Partitioning Problem in a QUBO model,

where the volume of a node is defined as the weighted degree and the penalty constant is
1

|E | Therefore, in both cases

we can perform a refinement while defining fixed values as

min sT
(

1

2|E |kk
T −A

)
s = min sTv

(
1

2|E |kvk
T
v

)
sv + sTv

(
1

|E |kvk
T
f

)
sf − sTAs (19)

and

min sT
(
αvvT − βA

)
s = min sTv

(
αvvv

T
v

)
sv + sTv

(
2αvvv

T
f

)
sf − βsTAs (20)

with

min −βsTAs = min −βsTvAvv sv − sTv (2βAvf sf ) (21)

The formulation in (19) and (20) are particularly important during the refinement step because this implies that the

complete dense (and therefore prohibitively large) QUBO or Ising model does not need to be created at each iteration.

These formulations also demonstrate a close relationship between the Graph Partitioning Problem and the Community

Detection Problem.

3.2 Efficient Evaluation of the Objective

In order to select the free variables for the subproblem, we need to be able to efficiently compute the change of the

objective function by moving one node from one part to another. In other words, for each vertexv , we need to efficiently

compute the gain which is the decrease (or increase) in the edge-cut together with penalty if v is moved to the other

part.

For a symmetric matrixM , the change in the value Q = sTMs by flipping a single variable si corresponding to the

node i is given by

∆Q(i) = 2(
∑
j ∈C1

Mi j −
∑
j ∈C2

Mi j ) (22)

where C1 and C2 correspond to all variables with si = −1 and si = 1 respectively. Next, we define

deд(v,C) :=
∑
j ∈C

Av j ; Deд(C) :=
∑
i ∈C

ki ; Vol(C) :=
∑
i ∈C

vi

then

2(
∑
j ∈C1

Ai j −
∑
j ∈C2

Ai j ) = 2deд(vi ,C1) − 2deд(vi ,C2)

and finally

2(
∑
j ∈C1

(vvT )i j −
∑
j ∈C2

(vvT )i j ) = 2

(
vi

∑
j ∈C1,i,j

vj − vi
∑
j ∈C2

vj

)
= 2vi

(
Vol(C1\i) −Vol(C2)

)
where we assume that i ∈ C1. This expression can be computed in O(1) time.
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In the same way

2(
∑
j ∈C1

(kkT )i j −
∑
j ∈C2

(kkT )i j ) = 2

(
ki

∑
j ∈C1,i,j

kj − ki
∑
j ∈C2

kj
)

= 2ki
(
Deд(C1\i) − Deд(C2)

)
can also be computed in O(1) time given Deд(C1) and Deд(C2), where Deд(Ci ) represents the sum of weighted degrees

of nodes in community i .

Therefore, the change in modularity is given by

∆Q(i) = ki
|E |

(
Deд(C1\i) − Deд(C2)

)
− 2

(
deд(vi ,C1) − deд(vi ,C2)

)
(23)

and change in edge-cut together with penalty value is given by

∆Q(i) = 2αvi
(
Vol(C1\i) −Vol(C2)

)
) − 2β

(
deд(vi ,C1) − deд(vi ,C2)

)
(24)

For each node i , both expressions (23) and (24) can be computed in O(ki ) time, where ki is the unweighted degree of

i .

At no point during the algorithm should the complete QUBO matrix be formulated. This also applies to the process

of evaluating a given solution. In other words, evaluating the modularity for the Community Detection Problem or

edge-cut together with penalty term for the Graph Partitioning Problem should be done in O(1) time and space. The

term is

sTvvT s =
(
Vol(C1) −Vol(C2)

)
2

where as

sTAs = 2(|E | − 2cut).

Therefore,

sT (αvvT − βA)s = α
(
Vol(C1) −Vol(C2)

)
2

− 2β(|E | − 2cut) (25)

and

sT
(

1

2|E |kk
T −A

)
s =

1

2|E |

(
Deд(C1) − Deд(C2)

)
2

− 2(|E | − 2cut) (26)

where equations (25) and (26) give the formulations for computing the modularity and edge-cut with corresponding

penalty value respectively without creating the QUBO matrix.

3.3 Algorithm Overview

Now we can combine the building blocks described in the previous two subsections. Let G = (V ,E) be the problem
graph. ML-QLS begins by coarsening the problem graph. During the coarsening stage, for some integer k , a hierarchy of

coarsened graphs G = G0,G1, . . . ,Gk is constructed. In this work, we used the coarsening tools implemented in KaHIP

Graph Partitioning package [51]. We used the coarsening implementation that is performed using maximum weight

matching with “expansion
∗2
” metric as described in [22]. The maximum edge matching is found using the Global Path

Algorithm [22]. In the next step, a QUBO is formulated for the smallest graph Gk and solved on the quantum device. If

|Vk | is greater than the hardware size
3
, QLS [56] with a random initialization is used to solve forGk . Then, the solution

is iteratively projected onto finer levels and refined using QLS. The algorithm overview is presented in Alg. 1.

3
more specifically, greater than the maximum number of variables in a problem that can be embedded on the device

Manuscript submitted to ACM



Multilevel Combinatorial Optimization Across Quantum Architectures 11

Algorithm 1Multilevel Quantum Local Search

functionML-QLS(G, problem_type)

if problem_type is modularity then
G = UpdateWeights(G)

G0,G1, . . . ,Gk = KaHIPCoarsen(G)
if |Vk | ≤HardwareSize then

// solve directly
QUBO = FormulateQUBO(Gk )

solution = SolveSubproblem(QUBO)

else
// use QLS
initial_solution = RandomSolution(Gk )

solution = RefineSolution(Gk , initial_solution)

for Gi in Gk−1,Gk−2, . . . ,G0 do
projected_solution = ProjectSolution(solution, Gi , Gi+1)

solution = RefineSolution(Gi , projected_solution)
return solution

function RefineSolution(Gi , projected_solution)

solution = projected_solution

while not converged do
∆Q = ComputeGains(Gi , solution)

X = HighestGainNodes(∆Q)
QUBO = FormulateQUBO(X )

// using IBM UQC or D-Wave QA
candidate = SolveSubproblem(QUBO)

if candidate > solution then
solution = candidate

return solution

For the Graph Partitioning Problem, the initial weight of each node is one by definition, therefore coarsening of the

nodes keeps the total node volume constant at each coarsening level. For the Community Detection Problem, the initial

weight of each node is set to the degree of the node. This ensures that the size of the graph (total number of weighted

edges) is also kept constant at each level. Note that Graph Partitioning is defined with respect to total node volume

(|V |), while modularity is defined with respect to the size (|E |, the total number of weighted edges) of the graph.

3.4 Addressing the Limited Precision of the Hardware

One of the subproblem solvers we used in this work is Quantum Annealing, which we ran on the LANL D-Wave 2000Q

machine. The D-Wave 2000Q is an analog quantum annealer with limited precision. In this work, we used a simple

coarsening that constructs coarser graphs by aggregating nodes at a finer level to become a single node at the coarser

level (i.e. many nodes on the finer level are merged into one node at the coarser level, with the volume of the new node

set to be the sum of the volumes of the nodes on the coarser level). This causes the precision required to describe the

node volumes and edge weights for coarser graphs to increase dramatically, especially for the large scale problems. Thus,

a QUBO describing the coarsest graph could require significantly more precision to represent compared to the finest

graph. For example, in Graph Partitioning where the QUBO problem to be minimized is A − αvvT , the range of values
in the matrix A increase at a different rate than the range of values in the matrix vv

T
during the coarsening process,
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Fig. 2. In Figure 2a, the maximum value is approximately 13 × 10
3.In Figure 2b, the maximum value is approximately 5 × 10

6 and
minimum value 1. A naive scaling of QUBO matrix A − vvT can result in values that are too large to be handled by the quantum
annealer due to its limited precision. Such values of A are ignored, leading to random balanced partitions.

increasing the precision required to describe the overall QUBO formed at each level (see an example on Fig. 2a). Thus, if

the QUBO A− αvvT is directly scaled to accommodate the limited precision of the device, the quality of the results can

suffer. In our experiments, we observe that directly scaling the QUBO returned feasible, but low quality solutions. In

order to overcome this challenge, for the problems solved on the D-Wave device, we first scaled the matrices A and

αvvT separately, and then formed the QUBO to be optimized. This approach then resulted in achieving results with

high quality solutions on the D-Wave device.

4 EXPERIMENTS AND RESULTS

Implementation. The general framework for ML-QLS is implemented in Python 3.7 with NetworkX [19] for network

operations. We have used the coarsening algorithms available in the KaHIP Graph Partitioning package [51] which are

implemented in C++. The code for the general ML-QLS framework is available on GitHub [1].

Systems. The refinement algorithms presented in this work require access to NISQ devices capable of solving problems

formulated in the Ising model. To this end, we have used the D-Wave 2000Q quantum annealer located at Los Alamos

National Laboratory, as well as IBM’s Poughkeepsie 20 qubit quantum computer available on the Oak Ridge National

Laboratory IBM Q hub network together with the high-performance simulator, IBM Qiskit Aer Simulator [7]. However,

our framework is modular and can easily be extended to utilize other novel quantum computing architectures as they

become available.

The D-Wave 2000Q is the state-of-the-art quantum annealer at this time. It has up to 2048 qubits which are laid out in a

special graph structure known as a Chimera graph. The Chimera graph is sparse, thus the device has sparse connectivity.

Fully connected graphs as dense problems need to be embedded onto the device, which leads to the maximum size

of 64 variables. We have used the embedding algorithm described in [9] to calculate a complete embedding of the 64

variable problem. We found this embedding only once and reused it during our experiments. We utilized D-Wave’s
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Solver API (SAPI) which is implemented in Python 2.7, to interact with the system. The D-Wave system is intrinsically

a stochastic system, where solutions are sampled from a distribution corresponding to the lowest energy state. For each

subproblem, the best solution out of 10,000 samples is returned. The annealing time for each call to the D-Wave system

was set to 20 microseconds.

In order to solve problems formulated in the Ising model on IBM’s Poughkeepsie quantum computer and simulator,

we implemented QAOA using the SBPLX [45] optimizer to find the optimal variational parameters. We allowed 2000

iterations for SBPLX to find optimal parameters for QAOA run on the simulator and 250 iterations for QAOA on the

device. Due to the limitations of NISQ devices available in IBM Q hub network [54], we used the RYRZ variational

form [3] (also known as a hardware-efficient ansatz) as the ansatz for our QAOA implementation. For the experiments

run on IBM quantum device Poughkeepsie, we perform the variational parameter optimization on the simulator locally

and run QAOA on the device via the IBM Q Experience cloud API. This is done due to the job queue limitations provided

via the IBM Q Experience. However, we expect to be able to run QAOA variational parameter optimization fully on

a device as more devices are becoming available on the cloud. We have used GNU Parallel [59] for the large-scale

numerical experiments performed on the quantum simulator.

Considering the fact that solutions from the NISQ devices and simulator do not provide optimality guarantees,

we have also solved various subproblems formulated in the Ising model using the solver Gurobi [36] together with

modeling package Pyomo [21]. The results using Gurobi as a solver for each subporblem are denoted as "Optimal" in

our plots to highlight the point that each subproblem was solved and proven to be optimal.

Instances. A summary of the graphs used in the experimentes together with their properties is presented in Ta-

ble 1. For the Graph Partitioning Problem, we evaluate ML-QLS on five graphs, four of which are drawn from The

Graph Partitioning Archive [58] (4elt, bcsstk30, cti and data) and one from the set of hard to partition graphs

(vsp_msc10848_300sep_100in_1Kout, denoted in figures as SSS12) [49]. For the Modularity Maximization Problem,

we evaluate ML-QLS on six graphs. The graphs roadNet-PA-20k and opsahl-powergrid are real-world networks from

the KONECT dataset [29]. Graphs msc23052 and finan512-10k are taken from the graph archive presented in [50].

The graphs finan512-10k and roadNet-PA-20k are reduced to 10,000 and 20,000 nodes respectively by performing

a breadth-first search from the median degree node. Note that due to the high diameter of these networks and their

structure (portfolio optimization problem and road network), this preserves their structural properties. GirvanNewman is

a synthetic graph generated using the model introduced by Girvan and Newman (GN) [17]. The graph lancichinetti1

is a synthetic graph generated using a generalization of the GN model that allows for heterogeneity in the distributions

of node degree and community size, introduced by Lancichinetti et al. [30]. Table 2 shows the parameters used to

generate the synthetic graphs.

Experimental Setup. Our experiments are performed in order to compare the solutions from ML-QLS with those

of high-quality classical solvers, and the best known results, if available. For the Graph Partitioning Problem, the

results are compared to those produced by KaHIP [51] which is a state-of-the-art multilevel Graph Partitioning

solver. The best known results are taken at The Graph Partitioning Archive [58] where applicable. In order to make

our approach more comparable to KaHIP, we follow the user guide [4], and use the kaffpaE version of the solver

with the option --mh_enable_kabapE for high quality refinement for perfectly balanced parts. We use the option

--preconfiguration=fast to ensure results are compared with a single V-cycle. Our results (cut values) are normalized

with either the best known value when applicable or by the smallest cut value found by any of the solvers used.
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Network name |V | |E | davg dmax

SSS12 21996 1221028 111.02 722

4elt 15606 45878 5.88 10

bcsstk30 28924 1007284 69.65 218

cti 16840 48232 5.73 6

data 2851 15093 10.59 17

roadNet-PA-20k 20000 26935 2.69 7

opsahl-powergrid 4941 6594 2.67 19

msc23052 5722 103391 36.14 125

finan512-10k 10000 28098 5.62 54

Table 1. Properties of the networks used to evaluate ML-QLS. davg is average degree, dmax is maximum degree

Network name |V | |E | davg dmax γ β µ

GirvanNewman 10,000 75,000 15.0 15 1 1 0.1

lancichinetti1 10,000 76,133 15.22 50 2 1 0.1

Table 2. Properties of synthetic networks used in the Modularity evaluation. davg is average degree, dmax is maximum degree, γ is
the exponent for the degree distribution, β is the exponent for the community size distribution and µ is the mixing parameter. For a
detailed discussion of the parameters the reader is referred to Ref. [30]

Network name Best modularity

finan512-10k 0.499

GirvanNewman 0.459

lancichinetti1 0.452

msc23052 0.499

opsahl-powergrid 0.497

roadNet-PA-20k 0.499

Table 3. Highest modularity value found by all methods for a given problem. The highest possible modularity value for at most 2
communities is 0.5.

For the Modularity Maximization Problem, we compare our solutions using ML-QLS with two classical clustering

methods, Asynchronous Fluid Communities [39] (implemented in NetworkX [19]) and Spectral Clustering [57, 62]

(implemented in Scikit-learn [40]). Note that even though these methods solve the same problem (namely, Community

Detection or clustering), they do not explicitly maximize modularity. Therefore, it is unfair to directly compare the

modularity of the solution produced by them to ML-QLS, which is explicitly maximizing modularity. However, they

provide a useful baseline. Moreover, since the maximum possible modularity for at most 2 communities is 0.5, the best

solutions found by all methods are no more than 1%–10% away from the optimal (see Table 3)

The experimental results are presented in Figure 4. We have made all raw result data available on Github [2]. For

each problem and method (except for QAOA on IBM Q Poughkeepsie quantum computer, labeled “QAOA (IBMQ Pough-

keepsie)” in Figure 4), we perform ten runs of a single V-cycle with different seeds. For “QAOA (IBMQ Poughkeepsie)”,

we perform just one run per each problem due to the limited access to quantum hardware.

Observations. We observe that ML-QLS is capable of achieving results close to the best ones found by other solvers

for all problems. For Graph Partitioning, Figure 4 shows significant variability in the quality of the solution across
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Fig. 3. Modularity (Approximation ratio) as the function of the size of the subproblem (hardware size). The performance is projected
using Gurobi as the subproblem solver and allowing it to solve each subproblem to optimality. The top plot presents the mean
approximation ratio averaged over the entire benchmark. The bottom plot presents the standard deviation. As the hardware size
increases, the quality of the solution found by ML-QLS improves.

different solvers and problem instances. This effect is also observed for the state-of-the-art Graph Partitioning solver

KaHIP, when run for a single V-cycle. This is partially due to the fact that we normalize the objectives to make them

directly comparable. For example, for the graph 4elt the best known cut value presented in The Graph Partitioning

Archive [58] is 139. Therefore, an absolute difference of 28 edges in cut obtained by a solver translates into a 20% relative

difference presented in Figure 4. However, the same absolute difference of 28 edges would translate into ≈ 0.44% for

the graph bcsstk30 (best known cut 6394). The graph SSS12 is specifically designed to be hard for traditional Graph

Partitioning frameworks [49]. This explains the high variation in the performance of KaHIP on it.

It is worth noting that QAOA on the IBM quantum computers (see “QAOA (IBM Q Poughkeepsie)” in Figure 4) takes

more iterations to converge to a solution compared to D-Wave. This is partially due to the fact that we perform the

QAOA variational parameter optimization on the simulator and only run once with the optimized parameters on the

device. As a result, the learned variational parameters do not include the noise profile of the device, limiting the quality

of subproblem solutions. As devices become more easily available, we expect to be able to run full variational parameter

optimization on the quantum hardware.

To project the performance improvements for future hardware, we simulate the performance of ML-QLS as a function

of hardware (subproblem) size shown in Figure 3. As the subproblem size increases, the average quality of the solution

found by ML-QLS improves and variation in results decreases. This shows that performance of ML-QLS can be improved

as larger size quantum devices and better quantum optimization routines are developed.
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5 OPEN PROBLEMS AND DISCUSSION

Revising (un)coarsening operators in anticipation of the new class of high-quality refinement solvers is the first major

open problem. The majority of multilevel algorithms for combinatorial optimization problems are inspired by the idea of

"thinking globally while acting locally". However, there is a crucial difference between these algorithms for combinatorial

problems and such methods as multigrid for continuous problems or multiscale PDE-based optimization. In multigrid

(e.g., for systems of linear equations), a relaxation at the uncoarsening stage is convergent [10], and in most cases assumes

an optimal solution (up to some tolerance) for a subset of relaxed variables given other variables are invariant (i.e., a fixed

solution for those variables that are not in the optimized subset). Examples include easily parallelizable Jacobi relaxation,

as well as hard to parallelize Gauss-Seidel relaxation in which most variables are typically optimized sequentially,

and many more. Both coarsening and uncoarsening operators (also known as the restriction, and prolongation in

multigrid) assume this convergence which in the end provides guarantees for the entire multilevel framework. However,

for the combinatorial multilevel solvers, the integer variables make this assumption practically impossible, even for

subproblems containing tens of variables optimized simultaneously. With the development of noiseless NISQ devices,

we can assume that in our hands will be extremely fast heuristics to produce nearly (if hypothetically not completely)

optimal solutions for combinatorial optimization problems of up to several hundreds variables. In order to use the

multilevel paradigm correctly, there will be a critical need to revise (un)coarsening operators that take this feature into

account because (to the best of our knowledge) all existing versions of coarsening operators do not consider optimality

of the refinement. Moreover, most existing multilevel frameworks exhibit more emphasis on computational speedup

rather than on the quality of the solution to better approximate the fine problem.

The second problem is not unique to multilevel methods but to most decomposition based approaches. Even if

quantum devices become fully developed and become more accessible for the broad scientific community, they will

still remain more expensive than regular CPU based devices. The decomposition approaches split the problem into

many small local subproblems, while multilevel methods may need even more of them because solving subproblems

is required at all levels of coarseness. Thus, there is a critical need in developing an extremely fast routing classifier

for a subproblem that will decide whether solving a particular subproblem on the NISQ device will be beneficial in

comparison to the CPU.

6 CONCLUSION

Current Noisy Intermediate-Scale Quantum (NISQ) devices are limited in the number of qubits and can therefore only

be used to directly solve combinatorial optimization problems that exhibit a limited number of variables. In order to

overcome this limitation, in this work we have proposed the multilevel computational framework for solving large-scale

combinatorial problems on NISQ devices. We demonstrate this approach on two well-known combinatorial optimization

problems, the Graph Partitioning Problem, and the Community Detection Problem, and perform experiments on the 20

qubit IBM gate-model quantum computer, and the 2048 qubit D-Wave 2000Q quantum annealer. In order to implement

an efficient iterative refinement scheme using the NISQ devices, we have developed novel techniques for efficiently

formulating and evaluating sub-QUBOs without explicitly constructing the entire QUBO of the large-scale problem,

which in many cases can be a dense matrix that makes it computationally expensive to store and process. In our

experiments, for the Graph Partitioning Problem, five graphs were chosen such that the smallest graph had 2851 nodes

while the largest had 28924 nodes, while for the Community Detection Problem, the smallest graph had 4941 nodes and

largest had 10,000 nodes. For both problems, for comparison purposes, we run one V-cycle of the multilevel framework
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with the different NISQ devices multiple times and compared the results to the state-of-art methods. Our experimental

results give comparable results to the state-of-the-art methods and for some cases we were able to get the best-known

results. This work therefore provides an important stepping stone to demonstrating practical Quantum Advantage.

As the capabilities of NISQ devices increase, we are hopeful that similar methods can provide a path to adoption of

quantum computers for a variety of business and scientific applications.
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