11 research outputs found

    Equilibration kinetics in isolated and membrane-bound photosynthetic reaction centers upon illumination: a method to determine the photoexcitation rate

    Get PDF
    Kinetics of electron transfer, following variation of actinic light intensity, for photosynthetic reaction centers (RCs) of purple bacteria (isolated and membrane-bound) were analyzed by measuring absorbance changes in the primary photoelectron donor absorption band at 865 nm. The bleaching of the primary photoelectron donor absorption band in RCs, following a sudden increase of illumination from the dark to an actinic light intensity of Iexp, obeys a simple exponential law with the rate constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}(αIexp  +  krec) (\alpha I_{\exp } \; + \;k_{\text{rec}} ) \end{document}, in which α is a parameter relating the light intensity, measured in mW/cm2, to a corresponding theoretical rate in units of reciprocal seconds, and krec is the effective rate constant of the charge recombination in the photosynthetic RCs. In this work, a method for determining the α parameter value is developed and experimentally verified for isolated and membrane-bound RCs, allowing for rigorous modeling of RC macromolecule dynamics under varied photoexcitation conditions. Such modeling is necessary for RCs due to alterations of the forward photoexcitation rates and relaxation rates caused by illumination history and intramolecular structural dynamics effects. It is demonstrated that the classical Bouguer–Lambert–Beer formalism can be applied for the samples with relatively low scattering, which is not necessarily the case with strongly scattering media or high light intensity excitation

    Atmospheric Escape and Evolution of Terrestrial Planets and Satellites

    No full text
    International audienceThe origin and evolution of Venus', Earth's, Mars' and Titan's atmospheres are discussed from the time when the active young Sun arrived at the Zero-Age-Main-Sequence. We show that the high EUV flux of the young Sun, depending on the thermospheric composition, the amount of IR-coolers and the mass and size of the planet, could have been responsible that hydrostatic equilibrium was not always maintained and hydrodynamic flow and expansion of the upper atmosphere resulting in adiabatic cooling of the exobase temperature could develop. Furthermore, thermal and various nonthermal atmospheric escape processes influenced the evolution and isotope fractionation of the atmospheres and water inventories of the terrestrial planets and Saturn's large satellite Titan efficiently
    corecore