12 research outputs found
Video Action Recognition Using Motion and Multi-View Excitation with Temporal Aggregation
Spatiotemporal and motion feature representations are the key to video action recognition. Typical previous approaches are to utilize 3D CNNs to cope with both spatial and temporal features, but they suffer from huge computations. Other approaches are to utilize (1+2)D CNNs to learn spatial and temporal features in an efficient way, but they neglect the importance of motion representations. To overcome problems with previous approaches, we propose a novel block which makes it possible to alleviate the aforementioned problems, since our block can capture spatial and temporal features more faithfully and efficiently learn motion features. This proposed block includes Motion Excitation (ME), Multi-view Excitation (MvE), and Densely Connected Temporal Aggregation (DCTA). The purpose of ME is to encode feature-level frame differences; MvE is designed to enrich spatiotemporal features with multiple view representations adaptively; and DCTA is to model long-range temporal dependencies. We inject the proposed building block, which we refer to as the META block (or simply “META”), into 2D ResNet-50. Through extensive experiments, we demonstrate that our proposed method architecture outperforms previous CNN-based methods in terms of “Val Top-1 %” measure with Something-Something v1 and Jester datasets, while the META yielded competitive results with the Moment-in-Time Mini dataset
Update on the pathological roles of prostaglandin E2 in neurodegeneration in amyotrophic lateral sclerosis
Abstract Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of upper and lower motor neurons. The pathogenesis of ALS remains largely unknown; however, inflammation of the spinal cord is a focus of ALS research and an important pathogenic process in ALS. Prostaglandin E2 (PGE2) is a major lipid mediator generated by the arachidonic-acid cascade and is abundant at inflammatory sites. PGE2 levels are increased in the postmortem spinal cords of ALS patients and in ALS model mice. Beneficial therapeutic effects have been obtained in ALS model mice using cyclooxygenase-2 inhibitors to inhibit the biosynthesis of PGE2, but the usefulness of this inhibitor has not yet been proven in clinical trials. In this review, we present current evidence on the involvement of PGE2 in the progression of ALS and discuss the potential of microsomal prostaglandin E synthase (mPGES) and the prostaglandin receptor E-prostanoid (EP) 2 as therapeutic targets for ALS. Signaling pathways involving prostaglandin receptors mediate toxic effects in the central nervous system. In some situations, however, the receptors mediate neuroprotective effects. Our recent studies demonstrated that levels of mPGES-1, which catalyzes the final step of PGE2 biosynthesis, are increased at the early-symptomatic stage in the spinal cords of transgenic ALS model mice carrying the G93A variant of superoxide dismutase-1. In addition, in an experimental motor-neuron model used in studies of ALS, PGE2 induces the production of reactive oxygen species and subsequent caspase-3-dependent cytotoxicity through activation of the EP2 receptor. Moreover, this PGE2-induced EP2 up-regulation in motor neurons plays a role in the death of motor neurons in ALS model mice. Further understanding of the pathophysiological role of PGE2 in neurodegeneration may provide new insights to guide the development of novel therapies for ALS
Adolescence as a critical period for nandrolone-induced muscular strength in relation to abuse liability, alone and in conjunction with morphine, using accumbal dopamine efflux in freely moving rats
Nandrolone, an anabolic androgenic steroid, is included in the prohibited list of the World Anti-Doping Agency. Drugs of abuse activate brain dopamine neurons and nandrolone has been suspected of inducing dependence. Accordingly, possible critical periods for the effects of nandrolone on muscular strength and dopaminergic activity have been investigated, including the effects of chronically administered nandrolone alone and on morphine-induced increases in dopamine efflux in the nucleus accumbens. Six- or 10-week-old male Sprague-Dawley rats were used. Treatment with nandrolone was initiated in adolescent (6-week-old) and young adult (10-week-old) rats. Nandrolone (5.0 mg/kg s.c.) or sesame oil vehicle was given once daily, on six consecutive days per week, for 3 weeks and then once per day for 4 consecutive days. Nandrolone enhanced the developmental increase in grip strength of 6- but not 10-week-old rats, without altering the developmental increase in body weight of either age group. Using in vivo microdialysis in freely moving 6-week-old rats given nandrolone for 4 weeks, basal accumbal dopamine efflux was unaltered, while the increase in dopamine efflux induced by acute administration of morphine (1.0 mg/kg s.c.) was reduced. The present study provides in vivo evidence that adolescence constitutes a critical period during which repeated administration of nandrolone enhances increases in muscular strength without influencing increases in body weight. Though repeated administration of nandrolone during this period of adolescence did not stimulate in vivo mesolimbic dopaminergic activity, it disrupted stimulation by an opioid, the drug class that is most commonly coabused with nandrolone. </p
Highly Efficient Conversion of Motor Neuron-Like NSC-34 Cells into Functional Motor Neurons by Prostaglandin E2
Motor neuron diseases are a group of progressive neurological disorders that degenerate motor neurons. The neuroblastoma × spinal cord hybrid cell line NSC-34 is widely used as an experimental model in studies of motor neuron diseases. However, the differentiation efficiency of NSC-34 cells to neurons is not always sufficient. We have found that prostaglandin E2 (PGE2) induces morphological differentiation in NSC-34 cells. The present study investigated the functional properties of PGE2-differentiated NSC-34 cells. Retinoic acid (RA), a widely-used agent inducing cell differentiation, facilitated neuritogenesis, which peaked on day 7, whereas PGE2-induced neuritogenesis took only 2 days to reach the same level. Whole-cell patch-clamp recordings showed that the current threshold of PGE2-treated cell action potentials was lower than that of RA-treated cells. PGE2 and RA increased the protein expression levels of neuronal differentiation markers, microtubule-associated protein 2c and synaptophysin, and to the same extent, motor neuron-specific markers HB9 and Islet-1. On the other hand, protein levels of choline acetyltransferase and basal release of acetylcholine in PGE2-treated cells were higher than in RA-treated cells. These results suggest that PGE2 is a rapid and efficient differentiation-inducing factor for the preparation of functionally mature motor neurons from NSC-34 cells
Endomorphin-2 and endomorphin-1 promote the extracellular amount of accumbal dopamine via nonopioid and mu-opioid receptors, respectively.
Contains fulltext :
49412.pdf (publisher's version ) (Closed access)Activation of mu-opioid receptors in the nucleus accumbens (NAc) is known to increase accumbal dopamine efflux in rats. Endomorphin-2 (Tyr-Pro-Phe-Phe-NH(2); EM-2) and endomorphin-1 (Tyr-Pro-Trp-Phe-NH(2); EM-1) are suggested to be the endogenous ligands for the mu-opioid receptor. As the ability of EM-2 and EM-1 to alter the accumbal extracellular dopamine level has not yet been studied in freely moving rats, the present study was performed, using a microdialysis technique that allows on-line monitoring of the extracellular dopamine with a temporal resolution of 5 min. A 25 min infusion of either EM-2 or EM-1 into the NAc (5, 25, and 50 nmol) produced a dose-dependent increase of the accumbal dopamine level. The EM-2 (50 nmol)- and EM-1 (25 and 50 nmol)-induced dopamine efflux were abolished by intra-accumbal perfusion of tetrodotoxin (2 muM). Intra-accumbal perfusion of the mu-opioid receptor antagonist CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH(2); 3 nmol) failed to affect the EM-2 (50 nmol)-induced dopamine release, whereas it significantly inhibited the EM-1 (25 and 50 nmol)-induced dopamine release. The EM-1 (50 nmol)-induced accumbal dopamine efflux was significantly reduced by the systemic administration of the putative mu1-opioid receptor antagonist naloxonazine (15 mg/kg, intraperitoneally (i.p.), given 24 h before starting the perfusion). Systemic administration of the aspecific opioid receptor antagonist naloxone (1 mg/kg, i.p., given 10 or 20 min before starting the perfusion) also failed to affect the EM-2 (50 nmol)-induced dopamine efflux, whereas it significantly inhibited the EM-1 (25 and 50 nmol)-induced dopamine efflux. The present study shows that the intra-accumbal infusion of EM-2 and EM-1 increases accumbal dopamine efflux by mechanisms that fully differ. It is concluded that the effects of EM-2 are not mediated via opioid receptors in contrast to the effects of EM-1 that are mediated via mu1-opioid receptors in the NAc