185 research outputs found

    On-Line Bayesian Speaker Adaptation By Using Tree-Structured Transformation and Robust Priors

    Get PDF
    This paper presents new results by using our previously proposed on-line Bayesian learning approach for affine transformation parameter estimation in speaker adaptation. The on-line Bayesian learning technique allows updating parameter estimates after each utterance and it can accommodate flexible forms of transformation functions as well as prior probability density functions. We show through experimental results the robustness of heavy tailed priors to mismatch in prior density estimation. We also show that by properly choosing the transformation matrices and depths of hierarchical trees, recognition performance improved significantly

    Loose mechanochemical coupling of molecular motors

    Full text link
    In living cells, molecular motors convert chemical energy into mechanical work. Its thermodynamic energy efficiency, i.e. the ratio of output mechanical work to input chemical energy, is usually high. However, using two-state models, we found the motion of molecular motors is loosely coupled to the chemical cycle. Only part of the input energy can be converted into mechanical work. Others is dissipated into environment during substeps without contributions to the macro scale unidirectional movement

    The mean velocity of two-state models of molecular motor

    Full text link
    The motion of molecular motor is essential to the biophysical functioning of living cells. In principle, this motion can be regraded as a multiple chemical states process. In which, the molecular motor can jump between different chemical states, and in each chemical state, the motor moves forward or backward in a corresponding potential. So, mathematically, the motion of molecular motor can be described by several coupled one-dimensional hopping models or by several coupled Fokker-Planck equations. To know the basic properties of molecular motor, in this paper, we will give detailed analysis about the simplest cases: in which there are only two chemical states. Actually, many of the existing models, such as the flashing ratchet model, can be regarded as a two-state model. From the explicit expression of the mean velocity, we find that the mean velocity of molecular motor might be nonzero even if the potential in each state is periodic, which means that there is no energy input to the molecular motor in each of the two states. At the same time, the mean velocity might be zero even if there is energy input to the molecular motor. Generally, the velocity of molecular motor depends not only on the potentials (or corresponding forward and backward transition rates) in the two states, but also on the transition rates between the two chemical states

    Semantic N-gram Language Modeling with the Latent Maximum Entropy Principle

    Get PDF
    We describe a unified probabilistic framework for statistical language modeling-the latent maximum entropy principle-which can effectively incorporate various aspects of natural language, such as local word interaction, syntactic structure and semantic document information. Unlike previous work on maximum entropy methods for language modeling, which only allow explicit features to be modeled, our framework also allows relationships over hidden features to be captured, resulting in a more expressive language model. We describe efficient algorithms for marginalization, inference and normalization in our extended models. We then present experimental results for our approach on the Wall Street Journal corpus

    Learning Mixture Models with the Latent Maximum Entropy Principle

    Get PDF
    We present a new approach to estimating mixture models based on a new inference principle we have proposed: the latent maximum entropy principle (LME). LME is different both from Jaynes’ maximum entropy principle and from standard maximum likelihood estimation. We demonstrate the LME principle by deriving new algorithms for mixture model estimation, and show how robust new variants of the EM algorithm can be developed. Our experiments show that estimation based on LME generally yields better results than maximum likelihood estimation, particularly when inferring latent variable models from small amounts of data

    Boltzmann Machine Learning with the Latent Maximum Entropy Principle

    Get PDF
    We present a new statistical learning paradigm for Boltzmann machines based on a new inference principle we have proposed: the latent maximum entropy principle (LME). LME is different both from Jaynes maximum entropy principle and from standard maximum likelihood estimation. We demonstrate the LME principle BY deriving new algorithms for Boltzmann machine parameter estimation, and show how robust and fast new variant of the EM algorithm can be developed. Our experiments show that estimation based on LME generally yields better results than maximum likelihood estimation, particularly when inferring hidden units from small amounts of data

    Towards Vision Enhancing LLMs: Empowering Multimodal Knowledge Storage and Sharing in LLMs

    Full text link
    Recent advancements in multimodal large language models (MLLMs) have achieved significant multimodal generation capabilities, akin to GPT-4. These models predominantly map visual information into language representation space, leveraging the vast knowledge and powerful text generation abilities of LLMs to produce multimodal instruction-following responses. We could term this method as LLMs for Vision because of its employing LLMs for visual-language understanding, yet observe that these MLLMs neglect the potential of harnessing visual knowledge to enhance overall capabilities of LLMs, which could be regraded as Vision Enhancing LLMs. In this paper, we propose an approach called MKS2, aimed at enhancing LLMs through empowering Multimodal Knowledge Storage and Sharing in LLMs. Specifically, we introduce the Modular Visual Memory, a component integrated into the internal blocks of LLMs, designed to store open-world visual information efficiently. Additionally, we present a soft Mixtures-of-Multimodal Experts architecture in LLMs to invoke multimodal knowledge collaboration during generation. Our comprehensive experiments demonstrate that MKS2 substantially augments the reasoning capabilities of LLMs in contexts necessitating physical or commonsense knowledge. It also delivers competitive results on multimodal benchmarks.Comment: 12 pages, 4 figure
    corecore