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Boltzmann Machine Learning with 
the Latent Maximum Entropy Principle 

Shaojun Wang 

University of Toronto 
Toronto, Canada 

Dale Schuurmans 

University of Waterloo 
Waterloo, Canada 

Abstract 

We present a new statistical learning 
paradigm for Boltzmann machines based 
on a new inference principle we have pro
posed: the latent maximum entropy principle 
(LME). LME is different both from Jaynes' 
maximum entropy principle and from stan
dard maximum likelihood estimation. We 
demonstrate the LME principle by deriving 
new algorithms for Boltzmann machine pa
rameter estimation, and show how a robust 
and rapidly convergent new variant of the 
EM algorithm can be developed. Our exper
iments show that estimation based on LME 
generally yields better results than maximum 
likelihood estimation when inferring models 
from small amounts of data. 

1 Introduction 

Boltzmann machines are probabilistic networks of bi
nary valued random variables that have wide applica
tion in areas of pattern recognition and combinatorial 
optimization (Aarts and Korst 1989). A Boltzmann 
machine can be represented as an undirected graph
ical model whose associated probability distribution 
has a simple quadratic energy function, and hence has 
the form of a Boltzmann-Gibbs distribution. 

Typically, the random variables are divided into a set 
of visible variables, whose states are clamped at ob
served data values, and a separate set of hidden vari
ables, whose values are unobserved. Inference, there
fore, usually consists of calculating the conditional 
probability of a configuration over the hidden vari
ables, or finding a most likely configuration of the 
hidden variables, given observed values for the visible 
variables. Inference in Boltzmann machines is known 
to be hard, because this generally involves summing 
or maximizing over an exponential number of possible 
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configurations of the hidden variables (Ackley et al. 
1985, Welling and Teh 2003). 

In this paper we will focus on the key problem of esti
mating the parameters of a Boltzmann machine from 
data. There is a surprisingly simple algorithm (Ack
ley et al. 1985) for performing maximum likelihood 
estimation of the weights of a Boltzmann machine-or 
equivalently, to minimize the KL divergence between 
the empirical data distribution and the implied Boltz
mann distribution. This classical algorithm is based on 
a direct gradient ascent approach where one calculates 
(or estimates) the derivative of the likelihood function 
with respect to the model parameters. The simplic
ity and locality of this gradient ascent algorithm has 
attracted a great deal of interest. 

However, there are two significant problems with the 
standard Boltzmann machine training algorithm that 
we address in this paper: First, the convergence rate 
of the standard algorithm is extremely slow. It is well 
known that gradient ascent converges only linearly, 
with a rate that depends critically on the condition 
of the Hessian matrix of the likelihood function. In 
order to achieve faster convergence one generally has 
to adjust the step size. In practice, gradient ascent 
methods often select step sizes by performing an ex
plicit line search in the gradient direction, which can 
lead to non-trivial overhead. 

Second, it is known that the true distribution is multi
modal, and the likelihood function has multiple lo
cal maxima. This raises the question of which local 
maximizer to choose as the final estimate. Fisher's 
classical maximum likelihood estimation (MLE) prin
ciple states that the desired estimate corresponds to 
the global maximizer of the likelihood function. How
ever, in practice it is often observed that MLE leads 
to over-fitting (poor generalization) particularly when 
faced with limited training data. 

To address both of the above problems in the context 
of Boltzmann machines, we have recently proposed a 
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new statistical machine learning framework for density 
estimation and pattern classification, which we refer 
to as the latent maximum entropy (LME) principle 
(Wang et a!. 2003).1 Although classical statistics is 
heavily based on parametric models, such an approach 
can sometimes be overly restrictive and prevent accu
rate models from being developed. The alternative 
principle we propose, LME, is a non-parametric ap
proach based on matching a set of features in the data 
(i.e. sufficient statistics, weak learners, or basis func
tions). This technique becomes parametric when we 
necessarily have to approximate the principle. LME is 
an extension to Jaynes' maximum entropy (ME) prin
ciple that explicitly incorporates latent variables in the 
formulation, and thereby extends the original principle 
to cases where data components are missing. The re
sulting principle is different from both maximum likeli
hood estimation and standard maximum entropy, but 
often yields better estimates in the presence of hidden 
variables and limited training data. 

In this paper we demonstrate the LME principle by de
riving new algorithms for Boltzmann machine param
eter estimation, and show how a robust and rapidly 
convergent new variant of the EM algorithm can be de
veloped. Our experiments show that estimation based 
on LME generally yields better results than maximum 
likelihood estimation, particularly when inferring hid
den units from small amounts of data. 

The remainder of the paper is organized as follows. 
First, in Section 2 we introduce the latent maximum 
entropy principle, and then outline a general training 
algorithm for this principle in Section 3. Once these 
preliminaries are in place, we then present the main 
contribution of this paper-a new training algorithm 
for Boltzmann machine estimation-in Section 4. Sec
tion 5 compares the new parameter optimization pro
cedure to standard procedures, and Section 6 compares 
the generalization performance of the new estimation 
principle to standard maximum likelihood. We con
clude the paper with a brief discussion in Section 7. 

1 A third problem, which we do not directly address in 
this paper, is that calculating a gradient involves summing 
over exponentially many configurations of the hidden vari
ables, and thus becomes intractable in large networks. It 
is therefore usually impractical to perform exact gradient 
ascent in these models, and some form of approximate in
ference (Welling and Teh 2003) or Monte Carlo estimation 
(Ackley et a!. 1985) is needed to approximate the gradi
ent. For the purposes of this paper, we simply assume that 
some sort of reasonable approximation technique is avail
able. See (Southey et a!. 2003) for an attempt to improve 
classical estimators for this problem. 

2 The latent maximum entropy 
principle 

To formulate the LME principle, let X E X be a ran
dom variable denoting the complete data, Y E Y be 
the observed incomplete data and Z E Z be the miss
ing data. That is, X = (Y, Z). If we let p(x) and 
p(y) denote the densities of X and Y respectively, and 
let p(zjy) denote the conditional density of Z given Y, 
then p(y) = fzEZp(x) f.l(dz) where p(x) = p(y)p(zjy). 
LME principle Given features !J, ... JN, specifying 
the properties we would like to match in the data, 
select a joint probability model p* from the space of all 
distributions P over X to maximize the joint entropy 

H(p) = -1 p(x) logp(x) f.l(dx) (1) xEX 
subject to the constraints 

1 fi(x)p(x) f.l(dx) = Lfi(y) { fi(x)p(zJy) f.l(dz) xEX yEY fzEZ 

i = l...N, Y and Z not independent (2) 

where x = (y, z). Here ji(y) is the empirical distribu
tion over the observed data, and Y denotes the set of 
observed Y values. Intuitively, the constraints specify 
that we require the expectations of fi(X) in the com
plete model to match their empirical expectations on 
the incomplete data Y, taking into account the struc
ture of the dependence of the unobserved component 
Z on Y. 
Unfortunately, there is no simple solution for p* in 
(1,2). However, a good approximation can be obtained 
by restricting the model to have an exponential form 

P>..(x) = P:\1 exp (t >.di(x)) 
where P>.. = fxEX exp (2::�

1 
>.;J;(x)) f.l(dx) is a nor

malizing constant that ensures fxEx P>..(x) f.l(dx) = 1. 
This restriction provides a free parameter >.; for each 
feature function k By adopting such a "log-linear" 
restriction, it turns out that we can formulate a prac
tical algorithm for approximately satisfying the LME 
principle. 

3 A general training algorithm for 
log-linear models 

To derive a practical training algorithm for log-linear 
models, we exploit the following intimate connection 
between LME and maximum likelihood estimation 
(MLE). 
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Theorem 1 Under the log-linear assumption, maxi
mizing the likelihood of log-linear models on incom
plete data is equivalent to satisfying the feasibility con
straints of the LME principle. That is, the only dis
tinction between MLE and LME in log-linear models 
is that, among local maxima (feasible solutions), LME 
selects the model with the maximum entropy, whereas 
MLE selects the model with the maximum likelihood 
(Wang et al. 2003). 

This connection allows us to exploit an EM algorithm 
(Dempster et al. 1977) to find feasible solutions to the 
LME principle. It is important to emphasize, how
ever, that EM will only find alternative feasible solu
tions, while the LME and MLE principles will differ 
markedly in the feasible solutions they prefer. We il
lustrate this clistinrtion helow. 
To formulate an EM algorithm for learning log-linear 
models, first decompose the log-likelihood function 
L(>..) into 

L(>..) L ii(y) log p"(y) = Q(>.., >..') + H(>.., >..') 
yEY 

where Q(>.., >..')  = L:yEY p(y) fzEZ PA' (ziy) logpA (x)Jl(dz), 
H(>.., >..') = - L:yEY p(y) fzEZ P-\' (ziy) logp,\ (ziy) Jl(dz). 
This is a standard decomposition used for deriving 
EM. For log-linear models, in particular, we have 

Q(.\, >.. (j)) = -log( <h) + (3) 

t .\; (�p(y) Lz f;(x)p-\<n(ziy) Jl(dz)) 
Interestingly, it turns out that maximizing Q(.\, >..U l) 
as a function of >.. for fixed >.. (j) (the M step) is equiva
lent to solving another constrained optimization prob
lem corresponding to a maximum entropy principle; 
but a much simpler one than before (Wang et al. 
2003). 

Lemma 1 Maximizing Q(>.., >.U)) as a function of >.. 
for fixed >.. (j) is equivalent to solving 

max ,\ 

subject to 

-1 PA(x) log p,\(X) Jl(dx) 
xEX 

1 f;(x) p"(x) Jl(dx) = 
xEX 

LP(Y) 1 f;(x)p,\ul(ziy) Jl(dz), i = l...N 
yEY zEZ 

(4) 

(5) 

It is critical to realize that the new constrained op
timization problem in Lemma 1 is much easier than 
maximizing (1) subject to (2) for log-linear models, 
because the right hand side of the constraints ( 5) no 

longer depends on >.. but rather on the fixed constants 
from the previous iteration >.. U). This means that 
maximizing (4) subject to (5) with respect to >.. is 
now a convex optimization problem with linear con
straints. The generalized iterative scaling algorithm 
(GIS) (Darroch et al. 1972) or improved iterative scal
ing algorithm (liS) (Della Pietra et al. 1997) can be 
used to maximize Q ( >.., >.. (j)) very efficiently. 

From these observations, we can recover feasible log
linear models by using an algorithm that combines EM 
with nested iterative scaling to calculate the M step. 

EM-IS algorithm: 

E Btep: Given >..Ul, for each feature /;, i = 1, ... , N, 
calculate its current expectation 17ij) with respect to 
)..U) by: 

17ii) = LP(Y) 1 f;(x)p-\<n(ziy) Jl(dz) 
yEY zEZ (6) 

M Btep: Perform S iterations of full parallel update 
of parameter values >..1, . . .  , AN either by GIS or liS as 
follows. Each update is given by 

di+s(S) _ di+(s-1)/S) + . 
Ai - /\ i ft 

such that /i satisfies 

(7) 

where f(x) =I:�= I fk(x) and s = 1, . . .  , S. I 
Provided that the E and M steps can both be com
puted, EM-IS can be shown to converge to a local max
imum in likelihood for log-linear models, and hence is 
guaranteed to yield feasible solutions to the LME prin
ciple. 

Theorem 2 The EM-IS algorithm monotoni-
cally increases the likelihood function L(.\), 
and all limit points of any EM-IS sequence 
pU+s(S),j :;::: O, s = l..S}, belong to the set 
8 = { >.. E )RN :a£(.\) fa.\ = 0 } . Therefore, EM-IS 
asymptotically yields feasible solutions to the LME 
principle for log-linear models (Wang et al. 2003). 

Thus, EM-IS provides an effective means to find fea
sible solutions to the LME principle. (We note that 
Lauritzen (1995) has suggested a similar algorithm, 
but did not supply a convergence proof. More recently, 
Riezler (1999) has also proposed an algorithm equiv
alent to setting S = 1 in EM-IS. However, we have 
found S > 1 to be more effective in many cases.) 

We can now exploit the EM-IS algorithm to develop a 
practical approximation to the LME principle. 



570 WANG ET AL. UAI2003 

ME-EM-IS algorithm: 

Initialization: Choose random initial values for A. 

EM-IS: Run EM-IS to convergence, to obtain feasible 
A*. 

Entropy calculation: Calculate the entropy of PA·. 
Model selection: Repeat the above steps several 
times to produce a set of distinct feasible candidates. 
Choose the feasible candidate that achieves the highest 
entropy. I 
This leads to a new estimation technique that we will 
compare to standard MLE below. One apparent corn
plication, first, is that we need to calculate the en
tropies of the candidate models produced by EM-IS. 
However, it turns out that we do not need to calculate 
entropies explicitly because one can recover the en
tropy of feasible log-linear models simply as a byprod
uct of running EM-IS to convergence. 

Corollary 1 If A* is feasible, then Q(A*, A*) 

-H(PA· ) and L(A*) = -H(PA•) + H(A*, A*). 

Therefore, at a feasible solution A*, we have already 
calculated the entropy, -Q(A*, A*), in the M step of 
EM-IS. 

To draw a clear distinction between LME and MLE, 
assume that the term H (A*, A*) from Corollary 1 
is constant across different feasible solutions. Then 
MLE, which maximizes L(A*), will choose the model 
that has lowest entropy, whereas LME, which maxi
mizes H (PA. ) , will chose a model that has least like
lihood. (Of course, H(A*, A*) will not be constant in 
practice and the comparison between MLE and LME 
is not so straightforward, but this example does high
light their difference.) The fact that LME and MLE 
are different raises the question of which method is 
the most effective when inferring a model from sample 
data. 

4 Application to Boltzmann machine 
training 

Consider a graphical model with M binary nodes tak
ing on values in {0, 1 }. Assume that among these 
nodes there are J observed nodes Y = (Yt, ... , Y,), 
and L = M- J hidden nodes Z = (Zt, ... , ZL)· Let 
X = (Y, Z). Thus, Y = {0, 1}', Z = {0, 1}L and 
X= {0, 1}'+L = {0, 1}M. For this problem, the ob
served data has the form of a J dimensional vector 
y = (y1, ... , YJ) E {0, 1 }'. Given an observed sequence 
of T ]-dimensional vectors Y = (y1, ... , yr), where 
y1 E {0, 1 }' for t = 1, ... , T, we attempt to infer a 
latent maximum entropy model that matches expec
tations on features defined between every pair of vari-

Figure 1: Boltzmann machine model: the nodes Y are 
observed and the nodes Z are unobserved. 

abies in the model. Specifically, we consider the fea
tures fkt(x) = YkY£, fkm(x) = YkZm, fmn(x) = ZmZn, 
for 1 :<:; k < £ :<:; J and 1 :<:; m < n :<:; L, where 
x = (y,z) = (y1, ... ,y,,z1, ... ,zL)· Note that the fea
tures are all binary, and therefore we can represent the 
structure of the log-linear model by a graph, as shown 
in Figure 1. 
Given a sequence of observed data Y = (y1, ... , yr), we 
formulate the LME principle as 

subject to 

maxH(X) = H(Y) + H(ZIY) 
p(x) 

L YkYf p(x) = L YkYt fJ(y) 
xEX 

L YkZm p(x) = LYk fJ(y) L Zm p(ziy) 
xEX yEY zE{O,t}L 
L ZmZn p(x) = L ZmZn p(z) 
xEX zE{O,t}L 

(9) 

for 1 :<:; k < £ :<:; J and 1 :<:; m < n :<:; L 

where x = (y, z) = (y1, ... , YJ, z1, ... , zL) and jj(y) = �· 
Again we can apply EM-IS to find a feasible log-linear 
model. To execute the E step, calculate the feature 
expectations according to (6) 

1 T ,.,Ul __ " YtYt ·•k,t - T L....- k t 
t=l 

1 T 
7]�� = T LY� L Zm p(ziy1) 

t=! zE{O,l}L 
ryg�n = L ZmZn p(z) 

zE{O,l}L 
for 1 :<:; k < £ :<:; J and 1 :<:; m < n :<:; L 

To execute the M step we then formulate the simpler 
maximum entropy problem with linear constraints, as 
in ( 4) and (5) 

rnaxH(X) = H(Y) + H(ZIY) (10) p(x) 
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subject to LYkY£ p(x) TJ(j) k,( 
xEX 
LYkZm p(x) = TJ(j) k,m 
xEX 
L ZmZn p(x) TJ(j) m,n 
xEX 

for 1 ::; k < f ::; J and 1 ::; m < n ::; L 

where x = (y,z) = (y1, ... ,yJ,z1, . • .  ,z£). In this 
case, the probability distribution for the complete data 
model can be written 

PA(x) = PA(z,y) 

=_!__e�Y T i\yy+�z T Azz+y T Ayzz 
<I> A 

1 lxTAx -e2 
<l>A 

where A = [ ��zA�; ] is the M x M symmetric 

matrix of .X parameters corresponding to the features 
over the variable pairs (with the diagonal elements of A 
equal to zero), and <I> A= I::xE{D,l}M e�x TAx is the nor
malization factor. This graphical model corresponds 
to a Boltzmann machine (Ackley et a!. 1985). To solve 
for the optimal Lagrange multipliers A (j) in the M step 
we once again need to use iterative scaling. Following 
(7), we iteratively improve A(J) by adding the update 
parameters l(j+s/S) that satisfy (8). These can be cal
culated by by using Newton's method or the bisection 
method to solve for l(j+s/S) in 

L 1 
YkYI xE{0,1)M <l>A(i+(•-1)/S) 

exp (�x T [A (j+(s-1)/S) + /k�t'/S)(1 T 1- fM J] X) 

L 1 YkZm 
xE{0,1)M <l> A(i+(•-1)/S) 

exp (�x T [A (j+(s-1)/S) + /tr•/5)(1 T 1-JM J] X) 

L ZmZn 
xE{0,1)M <l> A(i+(•-1)/S) 

exp (�xT [A(j+(s-1)/S)+I!:/•/S)(1T1-JM)Jx) = 

for 1 � k < e � J and 1 � m < n � L 

.,(j) k,l 

.,(j) m,n 

Here 1 is the M dimensional vector with all 1 ele
ments, and IM is the M x M identity matrix. The 
required expectations can be calculated by direct enu
meration when M is small, or approximated by Monte 

Carlo estimation (Ackley et a!. 1985), mean field the
ory (Kappen ad Rodriguez, 1998) or generalized belief 
propagation (Wainwright et a!. 2003, Welling and Teh, 
2003, Yeddida et a!. 2002) when M is large. 

5 Comparing EM-IS training to 
standard EM 

To compare EM-IS to standard Boltzmann machine 
estimation techniques, first consider the derivation of 
a direct EM approach. In standard EM, given the pre
vious parameters A (j), one solves for new parameters 
A by maximizing the auxiliary Q function with respect 
to A 

T 
Q(A,A') = � L L PA'(zjyt)iogpA(Yt,z) 

t=l zE{O,ljL 
1 T 

= -log(<I>A) + 2TL L xTAx PA'(ziy') 
t=l zE{O,l}L 

Taking derivatives with respect to A gives 

:A Q(A, A') (11) 

1 T 1 T 
= -2 EPA[xx ] + 2T L L xx T PA'(zly') 

t=l zE{O,l}L 
Apparently there is no closed form solution to the M 

step and a generalized EM algorithm has to be used in 
this case. The standard approach is to use a gradient 
ascent to approximately solve the M step. However, 
the step size needs to be controlled to ensure a mono
tonic improvement in Q. 

EM-IS has distinct ad vantages over the standard gra
dient ascent EM approach. First, EM-IS completely 
avoids the use of tuning parameters while still guar
anteeing monotonic improvement. Moreover, we have 
found that EM-IS converges faster than gradient as
cent EM. Figure 2 shows the result of a simple experi
ment that compares the rate of convergence of M step 
optimization techniques on a small Boltzmann ma
chine with five visible nodes and three hidden nodes. 
Comparing EM-IS to the gradient ascent EM algo
rithm proposed in (Ackley et a!. 1985), we find that 
EM-IS obtains substantially faster convergence. Fig
ure 2 also shows that using several IS iterations in 
the inner loop, S = 4, yields faster convergence than 
taking a single IS step, S = 1 (which corresponds to 
Riezler's proposed algorithm (Riezler 1999)). 
We note that in previous work, Byrne (1992) has pro
posed a sequential update algorithm for the M step 
in a Boltzmann machine parameter estimation algo
rithm. However, to maintain monotonic convergence, 
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Figure 2: Convergence evaluation: log-likelihood ver
sus iteration, solid curve denotes EM-IS with S=4, dot
ted curve denotes EM-IS with S=1,and dashed curve 
denotes gradient ascent. 

Byrne's algorithm requires a large number of itera
tions in the M step to ensure that a maximum is 
achieved. Otherwise the monotonic convergence prop
erty can be violated for the sequential updates he pro
poses. In our case, EM-IS uses a parallel update proce
dure that avoids this difficulty. A sequential algorithm 
that maintains the monotonic convergence property 
can also be achieved along the lines of (Collins et al. 
2002). 

6 Comparing ME-EM-IS estimation 
to maximum likelihood 

Even assuming that one has an effective algorithm for 
local parameter optimization, there remains the issue 
of coping with multiple local maxima. To select from 
local maxima we propose to use the new latent maxi
mum entropy (LME) technique instead of the classical 
maximum likelihood (MLE) approach. To ascertain 
whether LME or MLE yields better estimates when 
inferring models from sample data that has missing 
component, we conducted a simple experiment. In 
particular, we considered a simple eight nodes Boltz
mann machine with 5 observable and 3 hidden units 
as a case study. 

The basis for comparison between LME and MLE is 
to realize that by the discussion in Section 3, any fea
sible solution to the LME principle corresponds to a 
locally maximum likelihood model as specified by ( 11) . 
Therefore, we can implement EM-IS as outlined in Sec
tion 3 and generate feasible candidates for the LME 
and MLE principles simultaneously. From Theorem 1, 
we know that LME and MLE consider the same set of 
feasible candidates, except that among feasible solu
tions, LME selects the model with the highest entropy, 
whereas MLE selects the model with the highest likeli-

hood. Corollary 1 shows that these are not equivalent. 

We are interested in determining which method yields 
better estimates of various underlying models p* used 
to generate the data. We measure the quality of an 
estimate PA by calculating the cross entropy from the 
correct marginal distribution p* (y) to the estimated 
marginal distribution PA (y) on the observed data com
ponent Y 

D(p*(y) iiPA (Y) )  = 1 p*(y) log 
p*(

(
y)

) f..l(dy) 
yEY PA Y 

The goal is to minimize the cross entropy between the 
marginal distribution of the estimated model PA and 
the correct marginal p*. A cross entropy of zero is 
obtained only when PA (Y) matches p*(y). 
We consider a series of experiments with different mod
els and different sample sizes to test the robustness of 
both LME and MLE to sparse training data. In par
ticular, we used the following experimental design. 

1. Fix a target Boltzmann machine model p*(x) 
p*(y,z). 

2. Generate a sample of observed data Y 
(YI, ... , YT) according to p* (y). 

3. Run EM-IS to generate multiple feasible solutions 
by starting from 100 random initial parameters A. 

4. Calculate the entropy and likelihood for each fea
sible candidate. 

5. Select the maximum entropy candidate PLME as 
the LME estimate, and the maximum likelihood 
candidate PMLE as the MLE estimate. 

6. Calculate the cross entropy from p* (y) to the 
marginals PLME(Y) and PMLs(y) respectively. 

7. Repeat Steps 2 to 6 5 times and compute the av
erage of the respective cross entropies. That is, 
average the cross entropy over 5 repeated trials 
for each sample size and each method, in each ex
periment. 

8. Repeat Steps 2 to 7 for different sample sizes T. 

9. Repeat Steps 1 to 8 for different generative models 
p* (x) . 

In this experiment we generated the data according 
to a Boltzmann machine with 5 observable and 3 hid
den units, and attempted to learn the parameters for a 
Boltzmann machine that assumed the same architec
ture. 



UAI2003 WANG ET AL. 573 

-2.35,-----------------, 

] -255 
l -2.6 
! -2.65 

..:!.75 

"" 

-28�,'c. -------�,-;-, ----------J,, 
S•mples�te 

Figure 3: Average log-likelihood of the MLE estimate 
versus the LME estimates in Experiment 1. 
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Figure 4: Average entropy of the MLE estimate versus 
the LME estimates in Experiment 1. 

Figures 3 and 4 first show that the average log
likelihoods and average entropies of the models pro
duced by LME and MLE respectively behave as ex
pected. MLE clearly achieves higher log-likelihood 
than LME, however LME clearly produces models that 
have significantly higher entropy than MLE. The in
teresting outcome is that the two estimation strategies 
obtain significantly different cross entropies. Figure 5 
reports the average cross entropy obtained by MLE 
and LME as a function of sample size, and shows the 
result that LME achieves substantially lower cross en
tropy than MLE. LME's advantage is especially pro
nounced at small sample sizes, and persists even when 
sample sizes as large as 1,000 are considered (Figure 5). 

In our second experiment we used a generative model 
that was a Boltzmann machine with five observable 
and five hidden units. Specifically, we generated data 
with this architecture. The LME and MLE estima
tors still only inferred a Boltzmann machine with five 
observable and three hidden in this case, and hence 
were making an incorrect 'undercomplete' assumption 
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Figure 5: Average cross entropy between the true dis
tribution and the MLE estimate versus the LME esti
mates in Experiment 1. 

about the underlying model. 

Figure 6 shows that LME obtained a significantly lower 
cross entropy than MLE. 
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Figure 6: Average cross entropy between the true dis
tribution and the MLE estimate versus the LME esti
mates in Experiment 2. 

In our third experiment we used a generative model 
that was a Boltzmann machine with five observable 
and one hidden and the data were generated by this 
architecture. Again the LME and MLE estimators 
inferred Boltzmann machine with five observable and 
three hidden in this case, and hence were making an 
incorrect 'overcomplete' assumption about the under
lying model. 

Figure 7 shows that LME still obtained a significantly 
lower cross entropy than MLE. 

Although these results are anecdotal, we have wit
nessed a similar outcome on several other models as 
well. Wider experimentation on synthetic data and 
real MRF application and theoretical analysis are nec
essary to confirm this as a general conclusion. More-
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Figure 7: Average cross entropy between the true dis
tribution and the MLE estimate versas the LME esti
mates in Experiment 3. 

over, it is worthwhile to discuss and compare with 
training by minimizing contrastive divergence (Hinton 
2002). 

7 Conclusion 

We have introduced a new inference technique, the 
latent maximum entropy principle, and used it to de
rive a new local parameter optimization method, EM
IS, and also a new selection technique, ME-EM-IS, 
for Boltzmann machines. These principles yield new 
training and estimation algorithms that perform very 
effectively when compared to the standard methods. 

There remain several avenues to extend this work. 
More generally, by allowing binary-valued features of 
the form fv(w) = Wv1Wv2 ... Wv. for v = (vJ, ... vn ) , a 
path in G = (E,  V), we construct models that are 
essentially "higher-order" Boltzmann machines (Se
jnowski 1986). 

Also, the training and estimation methods can still 
be improved by tackling them simultaneously. In this 
paper, by randomly choosing different starting points, 
we take the feasible log-linear model with maximum 
entropy value as the LME estimate. This procedure is 
computationally expensive. Thus it is worthwhile to 
develop an analogous deterministic annealing ME-EM
IS algorithm to automatically find feasible maximum 
entropy log-linear model for LME (Ueda and Nakano 
1998). 
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