
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis) 

6-2000 

On-Line Bayesian Speaker Adaptation By Using Tree-Structured On-Line Bayesian Speaker Adaptation By Using Tree-Structured 

Transformation and Robust Priors Transformation and Robust Priors 

Shaojun Wang 
Wright State University - Main Campus, shaojun.wang@wright.edu 

Yunxin Zhao 

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis 

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons, 

Databases and Information Systems Commons, OS and Networks Commons, and the Science and 

Technology Studies Commons 

Repository Citation Repository Citation 
Wang, S., & Zhao, Y. (2000). On-Line Bayesian Speaker Adaptation By Using Tree-Structured 
Transformation and Robust Priors. Proceedings of the IEEE International Conference on Acoustics, 
Speech, and Signal Processing, 2, 977-980. 
https://corescholar.libraries.wright.edu/knoesis/1022 

This Conference Proceeding is brought to you for free and open access by the The Ohio Center of Excellence in 
Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis 
Publications by an authorized administrator of CORE Scholar. For more information, please contact library-
corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu
mailto:library-corescholar@wright.edu


ON-LINE BAYESIAN SPEAKER ADAPTATION USING TREE-STRUCTURED 
TRANSFORMATION AND ROBUST PRIORS 

Shaojun Wang’ Yunxin Zhao2 

Beckman Institute and Dept. of ECE, University of Illinois, Urbana, IL 61801’ 
DeDt. of CECS. Universitv of Missouri. Columbia. MO 65211’ - stuang@ifp.uiuc.edu ” 

ABSTRACT 
This paper presents new results by using our recently pro- 

posed on-line Bayesian learning approach for affine trans- 
formation parameter estimation in speaker adaptation. The 
on-line Bayesian learning technique allows updating param- 
eter estimates after each utterance and i t  can accommodate 
flexible forms of transformation functions as well as prior 
probability density function. We show through experimen- 
tal results the robustness of heavy tailed priors to  mismatch 
in prior density estimation. We also show that by properly 
choosing the transformation matrices and depths of hierar- 
chical trees, recognition performance improved significantly. 

1. INTRODUCTION 
On-line speaker adaptation is a practical method of cop- 

ing with talker variabilities to  improve accuracy of speech 
recognition. Several approaches appeared in the literature 
[3, 6, 10, 17, 18) for on-line speaker adaptation. One ap- 
proach [17, 181 used EM algorithm or segmental k-means 
training algorithm sequentially to on-line test speech to ac- 
complish unsupervised learning of model parameters. Since 
the accumulated sufficient statistics from each past utter- 
ance are computed using the model parameters updated at 
that time, the model parameter estimates are not as accu- 
rate as batch training. 

Another approach [8] uses an incremental version of the 
EM algorithm proposed in [14]. In incremental EM ap- 
proach, when the complete-data likelihood has the regular 
exponential-family form, the E step reduces to incremen- 
tally computing and maintaining the conditional sufficient 
statistics, and M step to  computing the ML/MAP estimates 
given these conditional sufficient statistics. In the k-th iter- 
ation, the conditional sufficient statistics of current observa- 
tion are computed using the k-lth model estimates, others 
are unchanged, as opposed to the batch version, and after 
each M step the conditional sufficient statistics of all the 
training data are recalculated using the lastest parameter 
estimates. In incremental EM training, eventhough likeli- 
hood is not guaranteed to increase as in the batch EM algo- 
rithm [2], its convergence is recent1 proved by Csiszar’s al- 
ternating minimization procedure b]. However, as pointed 
by Digalakis [6], this incremental EM algorithm is not an 
on-line algorithm since multiple passes through the data are 
performed and storage of current value of the conditional 
sufficient statistics from each past observations is required. 
Digalakis [6] suggested modifications to the incremental EM 
algorithm to enable its on-line computation. However, the 
convergence of this modified incremental EM is still open. 

On-line quasi-Bayes learning [lo] approximates the suc- 
cessive posterior distributions by the “closest” tractable dis- 
tribution within a given class P ,  under the criterion that 
both distributions have the same mode. Then the EM al- 
gorithm is applied and the hyperparameters of the approx- 
imate posterior distribution and model parameters are in- 
crementally updated. Empirical evidence showed that the 
quasi-Bayes algorithm does converge to  a reasonable solu- 
tion in terms of improving recognition rate and it has a 
similar behavior with the batch MAP algorithm [lo]. 
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In [16], we proposed an on-line Bayesian transformation 
algorithm that uses a hierarchical tree structure to control 
the degree of transformation tying. The underlying the- 
oretical framework is the recursive Bayesian learning we 
developed recently. This technique allows updating param- 
eter estimates after each utterance and it can accommodate 
flexible forms of transformation functions as well as prior 
probability density functions. Through speaker adaptation, 
recognition accuracy was consistently improved for increas- 
ing number of adaptation data, and the performance was 
shown to be superior to  existing on-lipe adaptation meth- 
ods. In the current work, we further investigate the choices 
on the form of prior density function, transformation ma- 
trices, depth of hierarchical trees, and demonstrate their 
significant impact on recognition performance. We show 
that heavy tailed priors are more robust for speaker a d a p  
tation, and the form of transformation matrix and the tree 
size should be adaptive to  data size. 

2. ON-LINE BAYESIAN LEARNING FOR 
TREE-STRUCTURED TRANSFORMATION 

PARAMETERS 
In this section, we briefly summarize recursive Bayesian 

learning for tree-structured transformation parameters [ 161. 
Assume that ok = {Q . . . , ek} are k successively indepen- 
dent blocks of speechl feature vectors and are described 
by a probability density function with parameter q. Let 
&,.+I (71, v ( ~ ) )  denote the auxiliary function of log likeli- 
hood as defined in EM algorithm [4, 131 and p(q14) be the 
prior pdf of 77 with parameter 4. Define Ror+l(q, - = 

Qok+l ( ~ , q ( ~ ) )  + logp(ql4), which becomes the auxiliary 
function of log posterior likelihood. Let l k ( ~ , q ( ~ ) )  = 
R O k + l  (7, v ( ~ ) )  - R2k (q, dk)) = (7, dk)). Then a re- 
cursive estimation algorithm can be derived as 

p + l )  = p )  + E k H ( Q k + l , q ( k ) ) - l ~  a t  ( q d k ) )  
k+l li aq l l q = q ( k )  

(1) 
where recursive computation of H(Q”’, is approx- 
imated as &[E,=, I c ( Q , , ~ ~ ( ~ ) )  + Ip(dk))l, Ic(Q,~v(~)) is 
the conditional expectation of the complete-data informa- 
tion matrix given Q, [13], I p ( q )  is prior information matrix, 
i.e., negative Hessian matrix of log ~(714) .  The optimal 
choice of ~k at each step is determined by line search [12] 
along the direction of H ( g k + ’ ,  q (k) ) -1-2-  k + l  (qdkf aq )Ilq=v(k) 
to maximize &Rgk+l (7, v ( ~ ) ) ,  which is approximated by 

Continuous density hidden Markov models of isolated 
words are adapted with state-dependent observation pdfs 
being Gaussian mixture densities. Affine transformation 
[5]  is applied to  the observations in the feature space, i.e., 
0, = AI’, + b, and it is equivalent to  a constrained model 
space transformation on both the mean vectors and covari- 
ance matrices of Gaussian densities. For the i th state and 

k+l 

& C,k_+ll[Qo,(v,da-l)) + I p ( d k ) ) l .  
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mth mixture, the transformation has the form of 

The transformation function G,(.) has C clusters with 
v7(k) = {(Ac ) , bc  } ,c  = l , . . . ,C ,  and each At,,,, = 
(pZ,,,Cz,,) is assumed to be labeled by a cluster mem- 
bership 0,. Details of derivations can be found in [16]. 

A hierarchical tree of the entire set of HMM Gaussian 
parameters is employed to  dynamically control the trans- 
formation tying and the prior knowledge of Gaussian pa- 
rameters is incorporated to estimate the transformation pa- 
rameters. The Gaussian densities are clustered by using 
the binary split K-means algorithm with a divergence mea- 
sure [3, 161. In [3], a bottom-up strategy is proposed to  
automatically search for the transformation parameters of 
each Gaussian mixture component, the computational cost 
is O(Glogd), where G is the number of Gaussian compo- 
nents and d the the depth of the hierarchical tree. In [IS], 
we use a more efficient strategy, i.e., white-black tree based 
bottom-up topdown strategy, for on-line Bayesian learn- 
ing of affine transformation parameters, where a bottom-up 
procedure is first used to perform on-line Bayesian learning 
of transformation parameters v:k) for the nodes containing 
adaptation data, and a topdown procedure is next used to 
perform transformations on all the HMM’s Gaussian mix- 
ture components, and the computation cost is O(G). 

3. SELECTION AND ESTIMATION OF PRIOR 
PROBABILITY DENSITY FUNCTION 

Within a Bayesian framework, prior distributions can be 
assigned to the transformation parameters 77. The choices 
of prior distribution are often quite arbitrary and depends 
on the type of prior knowledge available. Different choices 
of the priors in principle will lead to  different robustness 
properties of the learning procedure. Because there is no 
particular reason to believe that a postulated prior is true, 
one would like the estimator to be relatively insensitive to 
departures of the prior from the assumed form. This is a 
problem of Bayesian robustness with respect to  the prior [l]. 
Standard choices such as the exponential family and conju- 
gate prior, are known to be nonrobust in various ways: mod- 
els in the exponential family are very sensitive to  outliers 
in the data, and conjugate priors can have a pronounced 
effect on the answers even if the data is in conflict with 
the specified prior information [l]. On the other hand, the 
distributions with heavy tails, such as a-stable, generalized 
Gaussian and Student-t families, tend to be much more ro- 
bust than the standard choices. 

In the current wwk, we adopt the generalized Gaussian 
density priors (GGD), which have the form 

( k )  - 1  ( k )  

where f(vl4) = (77 - Pv)TC,’(v - P d ,  P(Y)  = with 
y the shape parameter, and r(.) the Gamma function. The 
pdf is also known as the power exponential distribution, 
or a-Gaussian etc. The GGD model contains the Gaussian 
and Laplacian density functions as special cases when using 
y = 2 and y = 1 ,  respectively. For decreasing values of y, 
the tails of the distribution become increasingly flat. The 
pdf exhibits an algebraic singularity at 17 = p, for 0 < y < 
1,  and as y goes to zero, p(pv) goes to infinity. Fig. 1 
illustrates the distributions corresponding to y = 0 .7 ,1 ,2  
and 5. 

The prior information matrix is given as 

”7 
I- 

.. 

Figure 1. GGD’s with unit variance and shape parameters 
y = 0.7,1,2, and 5 

Empirical Bayes approach has been commonly used to  es- 
timate the parameters 4 of prior densities [I, 71. In the em- 
pirical Bayes approach, speaker independent training data  
set 0 for estimating hyperparameters & can be divided into 
different subsets 01, . . . , Os that  correspond to S different. 
speakers and each has the transformation parameter v,,, . 
The parameter vc,s is accounted as random observations 
generated by a common prior distribution p ( q c l ~ c ) .  The 
marginal distribution of training data 0 can be written as 

There are two methods for parameter estimation of prior 
density, namely moment approach and type-I1 ML approach 
[l]. The moment approach applies when it is possible to re- 
late prior moments to  moments of the marginal distribution 
~ ( 0 1 4 ~ ) .  This method is often difficult to  apply except in 
few simple cases as provided in [3, 101. In type-I1 maximum 
likelihood approach, a maximum likelihood estimate, &, 
is obtained by maximizing p(OI&), and p(vcl&) is called 
type-I1 maximum likelihood prior [l]. However, I#J~  is rather 
difficult to  obtain due to  the integration in Eqn. (5). Al- 
though EM algorithm can be applied as suggested in [4], i t  
is often difficult to derive an explicit expression of solution 
in the E step of EM. 

To alleviate the problem, we attempt to  maximize an 
approximation of the integral in Eqn. (5). We assume 
that for any 4c, p(O,vc,sl$c) is sharply peaked at i jc,s = 
urgmaz(,c,,)p(0,vc,s14c) and we try to find & to  maxi- 
mize p(0,7jc,s14c). This leads to  an alternative maximiza- 
tion procedure over vc and +c as suggested in 171, i.e. 

722 = argmaz( ,c . s )~(os ,  q c , s ~ d k ) ) ,  s = 1 , .  . . 7 s 
&+I) = 

(6) 

ar!”z(mc)P(?, G C , S  l+c) (7) ( k )  
= argmaz(+c) n,=, p(vc,s  l 4 c )  

Here Eqn. (6) is used in the posterior estimate of qc,s and 
it can be solved by the batch EM gradient method in [lS], 
For Eqn. (7), there is no closed form solution, except for 
the case y = 2 (Gaussian). For each given q$), 4Sk+’) can 
be iteratively solved as 

C?+l) ( i  + 1) = 
f(,,k I#(”+ 1) ( l ) ) T / z -  1(v: -Pa+1) (if)(,: - P : + l ) ( i ) ) T  

E%, f(9!ld(k+1)(i))7/2-1 

(9) 
where index i denotes the iteration number. Note that  when 
y =.2? f(vs1q)7/2-1 = 1 and the above equations are the 
explicit solution of maximum likelihood estimation. ._ 
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4. EXPERIMENTAL RESULTS 
The on-line Bayesian learning approach is applied to on- 

line speaker adaptation using a vocabulary of 26-letter En- 
glish alphabet. Two severely mismatched speech databases 
, the OGI ISOLET and the TI46, were used for evaluat- 
ing the adaptation algorithm. A full description of these 
two corpora can be found in [lo]. For speaker independent 
training, the OGI ISOLET database was used. I t  consists 
of 150 speakers, each speaking the letter twice. For on-line 
Bayesian adaptation and testing, the English alphabet sub- 
set of the TI46 isolated word corpus was used. Among the 
16 talkers, data from 4 males were incomplete. Therefore, 
only 12 speakers (4 males and 8 females) were used in this 
study. Each person uttered each of the letters 26 times, 
where ten were collected in the same session and the re- 
maining 16 were collected in 8 different sessions with 2 in 
each session. For each person and each letter, we divided 
equally those 16 tokens collected in eight different sessions 
into two parts, one for adaptive training, another for test- 
ing. Each letter was modeled by a single left-to-right five- 
state CDHMM. Each state had a Gaussian mixture density 
of four components with each component density having 
a diagonal covariance matrix. The speech feature was ex- 
tracted based on a tenth-order LPC analysis, where the fea- 
ture components were 12 cepstral coefficients, a normalized 
log energy and their first time derivatives. 

A number of experiments were conducted, which included 
a comparison among Generalized Gaussian prior models 
with different y’s, a comparison among using diagonal, 
block diagonal and full transformation matrices, a compar- 
ison among the use of different depths of hierarchical tree. 
By default, we used six layered hierarchical tree and Gaus- 
sian prior in the experiments. 

I. Robustness of Priors 
We investigated the robustness of generalized Gaussian 

prior models. Here we used block diagonal matrix and the 
depth of hierartical tree was 6. The recognition performace 
by using three values of the shape parameter y = 2,1,0.7 
are shown in Fig. 2 .  As the results indicate, the recog- 
nition performance was improved when using priors with 
heavy tails than using standard Gaussian. There was little 
difference between the results for y = 1 and y = 0.7. 

11. Full, Block Diagonal and Diagonal Transformation 
Matrices 

A transformation matrix can be chosen as full, diago- 
nal or block diagonal. The use of block diagonal matrix 
is based on the assumptation that a seperate transforma- 
tion can be used for each type of speech features, including 
cepstral coefficients, energy, first-order time derivatives, re- 
sulting in a block diagonal transformation matrix in which 
parameter correlation is considered only within the same 
set of features. The choice of the transformation matrix 
structure is in general a trade-off between the number of 
parameters to be estimated and the amount of adapta- 

m , , , , , , , , , , 

-}I :I i 
1 

Figure 2. Performance of recognition results by GGD Pri- 
ors 

Figure 3. Full, block-diagonal, and diagonal matrix using 
10 adaptation utterences per speaker 

Im , , , , , , , , . 

...~.. ~.....~. ...~.. .... 
s) 

1 

Figure 4. Full, block-diagonal, and diagonal matrix using 
100 adaptation utterences per speaker 

tion data required. The problem is refered to as model 
parameterization complexity. Previously, Leggetter and 
Woodland (111 investigated the effect on recognition per- 
formance by taking transformation matrix to  be either full 
or diagonal in maximum likelihood linear regression batch 
adaptation approach. Here we investigate the effect in on- 
line Bayesian learning of tree-structured affine t.ransforma- 
tion parameters. 

We tested the effect of model parameterization complex- 
ity on recognition performance by using full, block diage 
nal as well as diagonal matrices while adaptation was using 
different depths of hierarchical tree, where the total adap- 
tation data were 10 utterances per speaker in one case and 
were 100 in another. 

Fig. 3 gives the recognition performance when using the 
small amount of adaptation data. All transformations pro- 
vided improvements over the initial model, but the effect 
of diagonal matrices was limited. The full matrices gave a 
substantial improvement when using one or three layered 
trees. However, as the depth of the tree was increased, the 
amount of data allocated to each leaf became small and the 
matrices were poorly estimated, and thus the performance 
of full matrices droped rapidly. With diagonal matrices, as 
deeper trees were used the performance gradually increased; 
however, this effect was very small and using 500 diagonal 
matrices was only 5.0% better than using one diagonal ma- 
trix. The amount of data needed to  estimate a diagonal 
matrix is much smaller than that of a full matrix. This in- 
dicates that deeper tree can be used for diagonal matrices 
than for full matrices with the same amount of data. The 
results show that increasing the depth of the tree did im- 
prove performance, but the performance never reached that 
of the full matrix. I t  is clear that the off-diagonal terms 
accounting for the interdependencies between elements of 
feature vectors were important. 

Fig. 4 gives the recognition performance when using the 
large amounts of adaptation data. In this case, the amount 
of data allocated to each leaf were abundant and the matri- 
ces were well estimated. Since full transformation matrices 
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Figure  5. 
depths 

take into accounts of interdependencies among elements of 
the feature vectors, i t  gave substantially better performance 
than those of diagonal transformation matrices. 

Performance of recognition results by  various 

111. Depth of Hierarchical Tree 
We investigated the effects of hierarchical tree with dif- 

ferent depths, which is termed as the problem of model 
structure complexity. Previously, Shinoda and Watanabe 
[ 151 investigated this problem for bias transformation by us- 
ing batch approach. Here we investigate this problem in on- 
line Bayesian learning of tree-structured affine transforma- 
tion parameters. Fig. 5 gives the recognition results of on- 
line learning of block-diagonal transformation matrices with 
various tree depths while varying the number of adaptation 
utterances. We observe that when the number of adap- 
tation data was small, good recognition performances were 
achieved by trees with shallow depths, and trees with deeper 
depths gave poor performance, since deeper t,ree struct,ure 
overfitted the limited training data. As more adaptat.ion 
data was presented, the performance of all trees gradually 
improved, but the trees with shallow depths improved lit- 
tle, which indicates underfitting the adaptation data. As 
sufficient amount of data was used, good recognition per- 
formance was achieved by trees with deeper depths. From 
the above results, we see that  a critical issue is obtaining 
right-sized trees, i.e., trees which neither underfit nor overfit 
the adaptation data. 

5.  DISCUSSION AND CONCLUSION 
The proposed on-line Bayesian learning technique allows 

updating parameter estimates after each utterance and can 
accommodate flexible forms of transformation functions as 
well as prior probability density functions. In this work, we 
suggested using GGD as priors for on-line Bayesian learning 
of tree-structured transformation of Gaussian densities of 
hidden Markov models. I t  was found that, heavy tailed prior 
density functions gave better recognition performance and 
thus are more robust to mismatch in prior estimation. 

From the experimental results, we can see that in or- 
der to best use the adaptat,ion data, information criteria of 
model selection needs to  be used. The issue of how to ac- 
comodate various information criteria into on-line Bayesian 
adaptation to control both model structural complexity and 
parameterization complexity is a further research direction 
we are going to explore. 
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