182 research outputs found

    WGCN: Graph Convolutional Networks with Weighted Structural Features

    Get PDF
    Graph structural information such as topologies or connectivities provides valuable guidance for graph convolutional networks (GCNs) to learn nodes' representations. Existing GCN models that capture nodes' structural information weight in- and out-neighbors equally or differentiate in- and out-neighbors globally without considering nodes' local topologies. We observe that in- and out-neighbors contribute differently for nodes with different local topologies. To explore the directional structural information for different nodes, we propose a GCN model with weighted structural features, named WGCN. WGCN first captures nodes' structural fingerprints via a direction and degree aware Random Walk with Restart algorithm, where the walk is guided by both edge direction and nodes' in- and out-degrees. Then, the interactions between nodes' structural fingerprints are used as the weighted node structural features. To further capture nodes' high-order dependencies and graph geometry, WGCN embeds graphs into a latent space to obtain nodes' latent neighbors and geometrical relationships. Based on nodes' geometrical relationships in the latent space, WGCN differentiates latent, in-, and out-neighbors with an attention-based geometrical aggregation. Experiments on transductive node classification tasks show that WGCN outperforms the baseline models consistently by up to 17.07% in terms of accuracy on five benchmark datasets

    Metabolomic analysis reveals spermatozoa and seminal plasma differences between Duroc and Liang guang Small-spotted pig

    Get PDF
    The Liang guang Small-spotted pig is a well-known Chinese indigenous pig that is valued for its exceptional meat quality. However, the Liang guang Small-spotted pig has a lower semen storage capacity, shorter storage time and worse semen quality compared to Duroc. Pig sperm used for artificial insemination (AI) loses part of vitality and quality when being stored in commercial solutions. Serious vitality losses and short shelf life of the semen are particularly prominent in Liang guang Small-spotted pig. In this study, the metabolites in seminal plasma and spermatozoa of Duroc and Liang guang Small-spotted pigs were identified using UHPLC–Q-TOF/MS technology. The findings indicated forty distinct metabolites concentrating on energy metabolic substrates and antioxidant capacity in Liang guang Small-spotted pig and Duroc seminal plasma, including D-Fructose, succinate, 2-dehydro-3-deoxy-d-gluconate, alanine betaine, citrate, carnitine, acetylcarnitine and so on. Seventeen different metabolites were explored, with a focus on glycerophospholipid metabolism in Liang guang Small-spotted pig and Duroc spermatozoa, primarily including glycerol 3-phosphate, acetylcarnitine, phosphatidylcholine (PC) 16:0/16:0, palmitoyl sphingomyelin, acetylcholine, choline, glycerophosphocholine, betaine, L-carnitine, creatinine and others. This study reveals the metabolite profile of spermatozoa and seminal plasma among different pig breeds and might be valuable for understanding the mechanisms that lead to sperm storage capacity. Metabolites involved in energy metabolism, antioxidant capacity and glycerophospholipid metabolism might be key to the poor sperm storage capacity in Liang guang Small-spotted pig

    First-principles computational investigation of nitrogen-doped carbon nanotubes as anode materials for lithium-ion and potassium-ion batteries.

    Get PDF
    Significant research efforts, mostly experimental, have been devoted to finding high-performance anode materials for lithium-ion and potassium-ion batteries; both graphitic carbon-based and carbon nanotube-based materials have been generating huge interest. Here, first-principles calculations are performed to investigate the possible effects of doping defects and the varying tube diameter of carbon nanotubes (CNTs) on their potential for battery applications. Both adsorption and migration of Li and K are studied for a range of pristine and nitrogen-doped CNTs, which are further compared with 2D graphene-based counterparts. We use detailed electronic structure analyses to reveal that different doping defects are advantageous for carbon nanotube-based and graphene-based models, as well as that curved CNT walls help facilitate the penetration of potassium through the doping defect while showing a negative effect on that of lithium

    The Roles of Platelet GPIIb/IIIa and αvβ3 Integrins during HeLa Cells Adhesion, Migration, and Invasion to Monolayer Endothelium under Static and Dynamic Shear Flow

    Get PDF
    During their passage through the circulatory system, tumor cells undergo extensive interactions with various host cells including endothelial cells and platelets. Mechanisms mediating tumor cell adhesion, migration, and metastasis to vessel wall under flow condition are largely unknown. The aim of this study was to investigate the potential roles of GPIIb/IIIa and αvβ3 integrins underlying the HeLa-endothelium interaction in static and dynamic flow conditions. HeLa cell migration and invasion were studied by using Millicell cell culture insert system. The numbers of transmigrated or invaded HeLa cells significantly increased by thrombin-activated platelets and reduced by eptifibatide, a platelet inhibitor. Meanwhile, RGDWE peptides, a specific inhibitor of αvβ3 integrin, also inhibited HeLa cell transmigration. Interestingly, the presence of endothelial cells had significant effect on HeLa cell migration regardless of static or cocultured flow condition. The adhesion capability of HeLa cells to endothelial monolayer was also significantly affected by GPIIb/IIIa and αvβ3 integrins. The arrested HeLa cells increased nearly 5-fold in the presence of thrombin-activated platelets at shear stress condition (1.84 dyn/cm2 exposure for 1 hour) than the control (static). Our findings showed that GPIIb/IIIa and αvβ3 integrins are important mediators in the pathology of cervical cancer and provide a molecular basis for the future therapy, and the efficient antitumor benefit should target multiple receptors on tumor cells and platelets

    Two-dimensional monolayer salt nanostructures can spontaneously aggregate rather than dissolve in dilute aqueous solutions

    Get PDF
    It is well known that NaCl salt crystals can easily dissolve in dilute aqueous solutions at room temperature. Herein, we reported the first computational evidence of a novel salt nucleation behavior at room temperature, i.e., the spontaneous formation of two-dimensional (2D) alkali chloride crystalline/non-crystalline nanostructures in dilute aqueous solution under nanoscale confinement. Microsecond-scale classical molecular dynamics (MD) simulations showed that NaCl or LiCl, initially fully dissolved in confined water, can spontaneously nucleate into 2D monolayer nanostructures with either ordered or disordered morphologies. Notably, the NaCl nanostructures exhibited a 2D crystalline square-unit pattern, whereas the LiCl nanostructures adopted non-crystalline 2D hexagonal ring and/or zigzag chain patterns. These structural patterns appeared to be quite generic, regardless of the water and ion models used in the MD simulations. The generic patterns formed by 2D monolayer NaCl and LiCl nanostructures were also confirmed by ab initio MD simulations. The formation of 2D salt structures in dilute aqueous solution at room temperature is counterintuitive. Free energy calculations indicated that the unexpected spontaneous salt nucleation behavior can be attributed to the nanoscale confinement and strongly compressed hydration shells of ions. Supplementary files, including 6 movies, attached below

    Experimental study on mechanical properties of filling-bulk ce-menting combination body

    Get PDF
    In order to study the influence of caved rocks in the goaf on the backfilling body in the backfilling mining, uniaxial compression test are carried out on the backfilling body-cemented granular body combination with different granular heights, discrete element lithology and backfilling body strength. The uniaxial compression failure of the combination body specimen is monitored in real time by using the three-dimensional acoustic emission positioning technology. The deformation and failure corresponding to the AE events in the loading process is characterized by combining the time parameters of AE events with the starting time points of the four stages of the stress-strain curve. Based on this, the failure model for the interface of the combination body is established. The results show that the height of granular is negatively correlated with the strength of the combination body, and the uniaxial compressive strength of the combination body with the backfilling height ratio of 1:4 is only 55.0 % of that of the single backfilling body. The discrete element lithology and the strength of backfilling body are positively correlated with the strength of the combination body. Although high-strength backfilling body can improve the uniaxial compressive strength of the combination body, the higher the strength of filling body in the combination body, the more serious the strength reduction of the combination body. When the particle lithology in cemented bulk is siltstone with low strength, the uniaxial compressive strength of the combination body is only 42.9% of that of single combination body. The siltstone with smaller compressive strength will have a fracture plane due to shear failure during the failure, and the limestone with larger compressive strength can withstand shear load by using the shear strength of the granular particles. When the cementing matrix in the cemented granular fails or the particles in the cemented granular are broken, the interface of the backfilling body and the cemented granular undergoes non-uniform compression deformation, resulting in the stress concentration on the backfilling body on the interface damaged by the cemented granular, resulting in the shear failure of the upper backfilling body locally, and the failure of backfilling body is the contribution of both axial stress and non-uniform deformation of the interface
    corecore