92 research outputs found

    Hierarchical Text Classification with Reinforced Label Assignment

    Full text link
    While existing hierarchical text classification (HTC) methods attempt to capture label hierarchies for model training, they either make local decisions regarding each label or completely ignore the hierarchy information during inference. To solve the mismatch between training and inference as well as modeling label dependencies in a more principled way, we formulate HTC as a Markov decision process and propose to learn a Label Assignment Policy via deep reinforcement learning to determine where to place an object and when to stop the assignment process. The proposed method, HiLAP, explores the hierarchy during both training and inference time in a consistent manner and makes inter-dependent decisions. As a general framework, HiLAP can incorporate different neural encoders as base models for end-to-end training. Experiments on five public datasets and four base models show that HiLAP yields an average improvement of 33.4% in Macro-F1 over flat classifiers and outperforms state-of-the-art HTC methods by a large margin. Data and code can be found at https://github.com/morningmoni/HiLAP.Comment: EMNLP 201

    A Survey on Datasets for Decision-making of Autonomous Vehicle

    Full text link
    Autonomous vehicles (AV) are expected to reshape future transportation systems, and decision-making is one of the critical modules toward high-level automated driving. To overcome those complicated scenarios that rule-based methods could not cope with well, data-driven decision-making approaches have aroused more and more focus. The datasets to be used in developing data-driven methods dramatically influences the performance of decision-making, hence it is necessary to have a comprehensive insight into the existing datasets. From the aspects of collection sources, driving data can be divided into vehicle, environment, and driver related data. This study compares the state-of-the-art datasets of these three categories and summarizes their features including sensors used, annotation, and driving scenarios. Based on the characteristics of the datasets, this survey also concludes the potential applications of datasets on various aspects of AV decision-making, assisting researchers to find appropriate ones to support their own research. The future trends of AV dataset development are summarized

    Rec4Ad: A Free Lunch to Mitigate Sample Selection Bias for Ads CTR Prediction in Taobao

    Full text link
    Click-Through Rate (CTR) prediction serves as a fundamental component in online advertising. A common practice is to train a CTR model on advertisement (ad) impressions with user feedback. Since ad impressions are purposely selected by the model itself, their distribution differs from the inference distribution and thus exhibits sample selection bias (SSB) that affects model performance. Existing studies on SSB mainly employ sample re-weighting techniques which suffer from high variance and poor model calibration. Another line of work relies on costly uniform data that is inadequate to train industrial models. Thus mitigating SSB in industrial models with a uniform-data-free framework is worth exploring. Fortunately, many platforms display mixed results of organic items (i.e., recommendations) and sponsored items (i.e., ads) to users, where impressions of ads and recommendations are selected by different systems but share the same user decision rationales. Based on the above characteristics, we propose to leverage recommendations samples as a free lunch to mitigate SSB for ads CTR model (Rec4Ad). After elaborating data augmentation, Rec4Ad learns disentangled representations with alignment and decorrelation modules for enhancement. When deployed in Taobao display advertising system, Rec4Ad achieves substantial gains in key business metrics, with a lift of up to +6.6\% CTR and +2.9\% RPM

    End-to-End Reinforcement Learning for Automatic Taxonomy Induction

    Get PDF
    We present a novel end-to-end reinforcement learning approach to automatic taxonomy induction from a set of terms. While prior methods treat the problem as a two-phase task (i.e., detecting hypernymy pairs followed by organizing these pairs into a tree-structured hierarchy), we argue that such two-phase methods may suffer from error propagation, and cannot effectively optimize metrics that capture the holistic structure of a taxonomy. In our approach, the representations of term pairs are learned using multiple sources of information and used to determine \textit{which} term to select and \textit{where} to place it on the taxonomy via a policy network. All components are trained in an end-to-end manner with cumulative rewards, measured by a holistic tree metric over the training taxonomies. Experiments on two public datasets of different domains show that our approach outperforms prior state-of-the-art taxonomy induction methods up to 19.6\% on ancestor F1.Comment: 11 Pages. ACL 2018 Camera Read
    corecore