85 research outputs found
Can Large Pre-trained Models Help Vision Models on Perception Tasks?
The recent upsurge in pre-trained large models (e.g. GPT-4) has swept across
the entire deep learning community. Such powerful large language models (LLMs)
demonstrate advanced generative ability and multimodal understanding
capability, which quickly achieve new state-of-the-art performances on a
variety of benchmarks. The pre-trained LLM usually plays the role as a
universal AI model that can conduct various tasks, including context reasoning,
article analysis and image content comprehension. However, considering the
prohibitively high memory and computational cost for implementing such a large
model, the conventional models (such as CNN and ViT), are still essential for
many visual perception tasks. In this paper, we propose to enhance the
representation ability of ordinary vision models for perception tasks (e.g.
image classification) by taking advantage of large pre-trained models. We
present a new learning paradigm in which the knowledge extracted from large
pre-trained models are utilized to help models like CNN and ViT learn enhanced
representations and achieve better performance. Firstly, we curate a high
quality description set by prompting a multimodal LLM to generate descriptive
text for all training images. Furthermore, we feed these detailed descriptions
into a pre-trained encoder to extract text embeddings with rich semantic
information that encodes the content of images. During training, text
embeddings will serve as extra supervising signals and be aligned with image
representations learned by vision models. The alignment process helps vision
models learn better and achieve higher accuracy with the assistance of
pre-trained LLMs. We conduct extensive experiments to verify that the proposed
algorithm consistently improves the performance for various vision models with
heterogeneous architectures.Comment: 9 pages, 5 figure
Genomic insights into antimicrobial potential and optimization of fermentation conditions of pig-derived Bacillus subtilis BS21
Bacillus spp. have been widely used as probiotic supplements in animal feed as alternatives to antibiotics. In the present study, we screened a Bacillus subtilis strain named BS21 from pig feces. Antimicrobial activities, whole genome mining and UHPLC-MS/MS analysis were used to explore its antimicrobial mechanism. Strain BS21 showed Significant growth inhibition against a variety of animal pathogens, including Escherichia coli, Salmonella enterica Pullorum, Salmonella enterica Typhimurium, Citrobacter rodentium, Shigella flexneri and Staphylococcus aureus. Seven gene clusters involved in antimicrobial biosynthesis of secondary metabolites were encoded by strain BS21 genome, including four non-ribosomal peptides (bacillibactin, fengycin, surfactin and zwittermicin A), one ribosomal peptide (subtilosin A), one dipeptide (bacilysin) and one polyketide (bacillaene). Among them, production of surfactin, fengycin, bacillibactin, bacilysin and bacillaene was detected in the supernatant of B. subtilis strain BS21. To develop the potential application of BS21 in animal production, medium components and fermentation parameters optimization was carried out using response surface methodology (RSM). Production of antimicrobial secondary metabolites of strain BS21 was increased by 43.4%, and the best medium formula after optimization was corn flour 2%, soybean meal 1.7% and NaCl 0.5% with optimum culture parameters of initial pH 7.0, temperature 30Ā°C, rotating speed at 220 rpm for 26 h. Our results suggested that strain BS21 has the potential for large-scale production and application as a potential source of probiotics and alternative to antibiotics for animal production
Effects of Neutrophil Extracellular Traps on Bovine Mammary Epithelial Cells in vitro
Bovine mastitis is a common infectious disease which causes huge economic losses in dairy cattle. Bovine mammary epithelial cell (BMEC) damage usually directly causes the decrease of milk production, which is one of the most important causes of economic loss. NETs, novel effector mechanisms, are reported to exacerbate the pathogenesis of several inflammatory diseases. NETs formation has also been observed in the milk and mammary glands of sheep. However, the effects and detailed mechanisms of NETs on BMEC damage remain unclear. Thus, we aim to examine the effects of NETs on BMECs in vitro, and further to investigate the detail mechanism. In this study, the cytotoxicity of NETs on BMECs was determined using lactic dehydrogenase (LDH) levels in culture supernatants. Histone-induced BMEC damage was examined by flow cytometry and immunofluorescence analysis. The activities of caspase 1, caspase 3, caspase 11, and NLRP3 was detected using western blotting and immunohistochemical analysis. The results showed that NETs and their component histone significantly increased cytotoxicity to BMECs, suggesting the critical role of NETs, and their component histone in BMEC damage. In addition, histone could also induce necrosis, pyroptosis, and apoptosis of BMECs, and the mechanisms by which histone leads to BMEC damage occurred via activating caspase 1, caspase 3, and NLRP3. Altogether, NETs formation regulates inflammation and BMEC damage in mastitis. Inhibiting excess NETs formation may be useful to ameliorate mammary gland damage associated with mastitis
Applying CS and WSN methods for improving efficiency of frozen and chilled aquatic products monitoring system in cold chain logistics
Wireless Sensor Network (WSN) is applied widely in food cold chain logistics. However, traditional monitoring systems require significant real-time sensor data transmission which will result in heavy data traffic and communication systems overloading, and thus reduce the data collection and transmission efficiency. This research aims to develop a temperature Monitoring System for Frozen and Chilled Aquatic Products (MS-FCAP) based on WSN integrated with Compressed Sending (CS) to improve the efficiency of MS-FCAP. Through understanding the temperature and related information requirements of frozen and chilled aquatic products cold chain logistics, this paper illustrates the design of the CS model which consists of sparse sampling and data reconstruction, and shelf-life prediction. The system was implemented and evaluated in cold chain logistics between Hainan and Beijing in China. The evaluation result suggests that MS-FCAP has a high accuracy in reconstructing temperature data under variable temperature condition as well as under constant temperature condition. The result shows that MS-FCAP is capable of recovering the sampled sensor data accurately and efficiently, reflecting the real-time temperature change in the refrigerated truck during cold chain logistics, and providing effective decision support traceability for quality and safety assurance of frozen and chilled aquatic products.Agro-scientific Researc
Three Capsular Polysaccharide Synthesis-Related Glucosyltransferases, GT-1, GT-2 and WcaJ, Are Associated With Virulence and Phage Sensitivity of Klebsiella pneumoniae
Klebsiella pneumoniae (K. pneumoniae) spp. are important nosocomial and community-acquired opportunistic pathogens, which cause various infections. We observed that K. pneumoniae strain K7 abruptly mutates to rough-type phage-resistant phenotype upon treatment with phage GH-K3. In the present study, the rough-type phage-resistant mutant named K7RR showed much lower virulence than K7. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis indicated that WcaJ and two undefined glycosyltransferases (GTs)- named GT-1, GT-2- were found to be down-regulated drastically in K7RR as compared to K7 strain. GT-1, GT-2, and wcaJ are all located in the gene cluster of capsular polysaccharide (CPS). Upon deletion, even of single component, of GT-1, GT-2, and wcaJ resulted clearly in significant decline of CPS synthesis with concomitant development of GH-K3 resistance and decline of virulence of K. pneumoniae, indicating that all these three GTs are more likely involved in maintenance of phage sensitivity and bacterial virulence. Additionally, K7RR and GT-deficient strains were found sensitive to endocytosis of macrophages. Mitogen-activated protein kinase (MAPK) signaling pathway of macrophages was significantly activated by K7RR and GT-deficient strains comparing with that of K7. Interestingly, in the presence of macromolecular CPS residues (>250 KD), K7(ĪGT-1) and K7(ĪwcaJ) could still be bounded by GH-K3, though with a modest adsorption efficiency, and showed minor virulence, suggesting that the CPS residues accumulated upon deletion of GT-1 or wcaJ did retain phage binding sites as well maintain mild virulence. In brief, our study defines, for the first time, the potential roles of GT-1, GT-2, and WcaJ in K. pneumoniae in bacterial virulence and generation of rough-type mutation under the pressure of bacteriophage
Taraxasterol Inhibits LPS-Induced Inflammatory Response in BV2 Microglia Cells by Activating LXRĪ±
Neuroinflammation plays a critical role in the development of neurodegenerative diseases. Taraxasterol, a pentacyclic-triterpene isolated from Taraxacum officinale, has been reported to have anti-inflammatory effect. The aim of this study was to investigate the anti-inflammatory effects and mechanism of taraxasterol in LPS-stimulated BV2 microglia cells. BV2 microglia cells were treated with taraxasterol 12 h before LPS stimulation. The effects of taraxasterol on LPS-induced TNF-Ī± and IL-1Ī² production were detected by ELISA. The effects of taraxasterol on LXRĪ±, ABCA1, TLR4, and NF-ĪŗB expression were detected by western blot analysis. The results showed that taraxasterol dose-dependently inhibited LPS-induced TNF-Ī± and IL-1Ī² production and NF-ĪŗB activation. Taraxasterol also disrupted the formation of lipid rafts and inhibited translocation of TLR4 into lipid rafts. Furthermore, taraxasterol was found to activate LXRĪ±-ABCA1 signaling pathway which induces cholesterol efflux from cells. In addition, our results showed that the anti-inflammatory effect of taraxasterol was attenuated by transfection with LXRĪ± siRNA. In conclusion, these results suggested that taraxasterol inhibits LPS-induced inflammatory response in BV2 microglia cells by activating LXRĪ±-ABCA1 signaling pathway
Platycodin D Inhibits Inflammatory Response in LPS-Stimulated Primary Rat Microglia Cells through Activating LXRĪ±āABCA1 Signaling Pathway
Platycodin D (PLD), an effective triterpenesaponin extracted from Platycodon grandiflorum, has been known to have anti-inflammatory effect. In the present study, we investigate the anti-inflammatory effects of PLD on LPS-induced inflammation in primary rat microglia cells. The results showed that PLD significantly inhibited LPS-induced ROS, TNF-Ī±, IL-6, and IL-1Ī² production in primary rat microglia cells. PLD also inhibited LPS-induced NF-ĪŗB activation. Furthermore, our results showed that PLD prevented LPS-induced TLR4 translocation into lipid rafts via disrupting the formation of lipid rafts by inducing cholesterol efflux. In addition, PLD could activate LXRĪ±āABCA1 signaling pathway which induces cholesterol efflux from cells. The inhibition of inflammatory cytokines by PLD could be reversed by SiRNA of LXRĪ±. In conclusion, these results indicated that PLD prevented LPS-induced inflammation by activating LXRĪ±āABCA1 signaling pathway, which disrupted lipid rafts and prevented TLR4 translocation into lipid rafts, thereby inhibiting LPS-induced inflammatory response
Canine Fecal Microbiota Transplantation: Current Application and Possible Mechanisms
Fecal microbiota transplantation (FMT) is an emerging therapeutic option for a variety of diseases, and is characterized as the transfer of fecal microorganisms from a healthy donor into the intestinal tract of a diseased recipient. In human clinics, FMT has been used for treating diseases for decades, with promising results. In recent years, veterinary specialists adapted FMT in canine patients; however, compared to humans, canine FMT is more inclined towards research purposes than practical applications in most cases, due to safety concerns. Therefore, in order to facilitate the application of fecal transplant therapy in dogs, in this paper, we review recent applications of FMT in canine clinical treatments, as well as possible mechanisms that are involved in the process of the therapeutic effect of FMT. More research is needed to explore more effective and safer approaches for conducting FMT in dogs
- ā¦