44 research outputs found

    RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Next generation sequencing is transforming our understanding of transcriptomes. It can determine the expression level of transcripts with a dynamic range of over six orders of magnitude from multiple tissues, developmental stages or conditions. Patterns of gene expression provide insight into functions of genes with unknown annotation.</p> <p>Results</p> <p>The RNA Seq-Atlas presented here provides a record of high-resolution gene expression in a set of fourteen diverse tissues. Hierarchical clustering of transcriptional profiles for these tissues suggests three clades with similar profiles: aerial, underground and seed tissues. We also investigate the relationship between gene structure and gene expression and find a correlation between gene length and expression. Additionally, we find dramatic tissue-specific gene expression of both the most highly-expressed genes and the genes specific to legumes in seed development and nodule tissues. Analysis of the gene expression profiles of over 2,000 genes with preferential gene expression in seed suggests there are more than 177 genes with functional roles that are involved in the economically important seed filling process. Finally, the Seq-atlas also provides a means of evaluating existing gene model annotations for the <it>Glycine max </it>genome.</p> <p>Conclusions</p> <p>This RNA-Seq atlas extends the analyses of previous gene expression atlases performed using Affymetrix GeneChip technology and provides an example of new methods to accommodate the increase in transcriptome data obtained from next generation sequencing. Data contained within this RNA-Seq atlas of <it>Glycine max </it>can be explored at <url>http://www.soybase.org/soyseq</url>.</p

    Gene expression patterns are correlated with genomic and genic structure in soybean

    Get PDF
    Studies have indicated that exon and intron size and intergenic distance are correlated with gene expression levels and expression breadth. Previous reports on these correlations in plants and animals have been conflicting. In this study, next-generation sequence data, which has been shown to be more sensitive than previous expression profiling technologies, were generated and analyzed from 14 tissues. Our results revealed a novel dichotomy. At the low expression level, an increase in expression breadth correlated with an increase in transcript size because of an increase in the number of exons and introns. No significant changes in intron or exon sizes were noted. Conversely, genes expressed at the intermediate to high expression levels displayed a decrease in transcript size as their expression breadth increased. This was due to smaller exons, with no significant change in the number of exons. Taking advantage of the known gene space of soybean, we evaluated the positioning of genes and found significant clustering of similarly expressed genes. Identifying the correlations between the physical parameters of individual genes could lead to uncovering the role of regulation owing to nucleotide composition, which might have potential impacts in discerning the role of the noncoding regions

    Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean

    Get PDF
    Background: The nutritional and economic value of many crops is effectively a function of seed protein and oil content. Insight into the genetic and molecular control mechanisms involved in the deposition of these constituents in the developing seed is needed to guide crop improvement. A quantitative trait locus (QTL) on Linkage Group I (LG I) of soybean (Glycine max (L.) Merrill) has a striking effect on seed protein content. Results: A soybean near-isogenic line (NIL) pair contrasting in seed protein and differing in an introgressed genomic segment containing the LG I protein QTL was used as a resource to demarcate the QTL region and to study variation in transcript abundance in developing seed. The LG I QTL region was delineated to less than 8.4 Mbp of genomic sequence on chromosome 20. Using Affymetrix® Soy GeneChip and high-throughput Illumina® whole transcriptome sequencing platforms, 13 genes displaying significant seed transcript accumulation differences between NILs were identified that mapped to the 8.4 Mbp LG I protein QTL region. Conclusions: This study identifies gene candidates at the LG I protein QTL for potential involvement in the regulation of protein content in the soybean seed. The results demonstrate the power of complementary approaches to characterize contrasting NILs and provide genome-wide transcriptome insight towards understanding seed biology and the soybean genome

    The spatial arrangement of ORC binding modules determines the functionality of replication origins in budding yeast

    Get PDF
    In the quest to define autonomously replicating sequences (ARSs) in eukaryotic cells, an ARS consensus sequence (ACS) has emerged for budding yeast. This ACS is recognized by the replication initiator, the origin recognition complex (ORC). However, not every match to the ACS constitutes a replication origin. Here, we investigated the requirements for ORC binding to origins that carry multiple, redundant ACSs, such as ARS603. Previous studies raised the possibility that these ACSs function as individual ORC binding sites. Detailed mutational analysis of the two ACSs in ARS603 revealed that they function in concert and give rise to an initiation pattern compatible with a single bipartite ORC binding site. Consistent with this notion, deletion of one base pair between the ACS matches abolished ORC binding at ARS603. Importantly, loss of ORC binding in vitro correlated with the loss of ARS activity in vivo. Our results argue that replication origins in yeast are in general comprised of bipartite ORC binding sites that cannot function in random alignment but must conform to a configuration that permits ORC binding. These requirements help to explain why only a limited number of ACS matches in the yeast genome qualify as ORC binding sites

    Single-feature polymorphism discovery by computing probe affinity shape powers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Single-feature polymorphism (SFP) discovery is a rapid and cost-effective approach to identify DNA polymorphisms. However, high false positive rates and/or low sensitivity are prevalent in previously described SFP detection methods. This work presents a new computing method for SFP discovery.</p> <p>Results</p> <p>The probe affinity differences and affinity shape powers formed by the neighboring probes in each probe set were computed into SFP weight scores. This method was validated by known sequence information and was comprehensively compared with previously-reported methods using the same datasets. A web application using this algorithm has been implemented for SFP detection. Using this method, we identified 364 SFPs in a barley near-isogenic line pair carrying either the wild type or the mutant <it>uniculm2 </it>(<it>cul2</it>) allele. Most of the SFP polymorphisms were identified on chromosome 6H in the vicinity of the <it>Cul2 </it>locus.</p> <p>Conclusion</p> <p>This SFP discovery method exhibits better performance in specificity and sensitivity over previously-reported methods. It can be used for other organisms for which GeneChip technology is available. The web-based tool will facilitate SFP discovery. The 364 SFPs discovered in a barley near-isogenic line pair provide a set of genetic markers for fine mapping and future map-based cloning of the <it>Cul2 </it>locus.</p

    Pathogenicity and Impact of HLA Class I Alleles in Aplastic Anemia Patients of Different Ethnicities

    Get PDF
    Acquired aplastic anemia (AA) is caused by autoreactive T cell-mediated destruction of early hematopoietic cells. Somatic loss of human leukocyte antigen (HLA) class I alleles was identified as a mechanism of immune escape in surviving hematopoietic cells of some patients with AA. However, pathogenicity, structural characteristics, and clinical impact of specific HLA alleles in AA remain poorly understood. Here, we evaluated somatic HLA loss in 505 patients with AA from 2 multi-institutional cohorts. Using a combination of HLA mutation frequencies, peptide-binding structures, and association with AA in an independent cohort of 6,323 patients from the National Marrow Donor Program, we identified 19 AA risk alleles and 12 non-risk alleles and established a potentially novel AA HLA pathogenicity stratification. Our results define pathogenicity for the majority of common HLA-A/B alleles across diverse populations. Our study demonstrates that HLA alleles confer different risks of developing AA, but once AA develops, specific alleles are not associated with response to immunosuppression or transplant outcomes. However, higher pathogenicity alleles, particularly HLA-B*14:02, are associated with higher rates of clonal evolution in adult patients with AA. Our study provides insights into the immune pathogenesis of AA, opening the door to future autoantigen identification and improved understanding of clonal evolution in AA

    Race, ethnicity, ancestry, and aspects that impact HLA data and matching for transplant

    No full text
    Race, ethnicity, and ancestry are terms that are often misinterpreted and/or used interchangeably. There is lack of consensus in the scientific literature on the definition of these terms and insufficient guidelines on the proper classification, collection, and application of this data in the scientific community. However, defining groups for human populations is crucial for multiple healthcare applications and clinical research. Some examples impacted by population classification include HLA matching for stem-cell or solid organ transplant, identifying disease associations and/or adverse drug reactions, defining social determinants of health, understanding diverse representation in research studies, and identifying potential biases. This article describes aspects of race, ethnicity and ancestry information that impact the stem-cell or solid organ transplantation field with particular focus on HLA data collected from donors and recipients by donor registries or transplant centers
    corecore