6,928 research outputs found

    Complementary-MOS binary counter with parallel-set inputs

    Get PDF
    Metal oxide semiconductor four-stage binary counter contains reset capability as well as four parallel-set inputs gated in by a logic signal. Parallel-set inputs permit setting the counter into any of sixteen possible states

    Design and development of a digital subsystem employing n and p-channel Mos Fet's in complementary circuits in an integrated circuit array Final report, 1 May 1967 - 30 Apr. 1968

    Get PDF
    Digital subsystem design and development employing n-channel and p-channel in MOS FET units in complimentary circuits in integrated circuit arra

    Confinement and Localization on Domain Walls

    Full text link
    We continue the studies of localization of the U(1) gauge fields on domain walls. Depending on dynamics of the bulk theory the gauge field localized on the domain wall can be either in the Coulomb phase or squeezed into flux tubes implying (Abelian) confinement of probe charges on the wall along the wall surface. First, we consider a simple toy model with one flavor in the bulk at weak coupling (a minimal model) realizing the latter scenario. We then suggest a model presenting an extension of the Seiberg--Witten theory which is at strong coupling, but all theoretical constructions are under full control if we base our analysis on a dual effective action. Finally, we compare our findings with the wall in a "nonminimal" theory with two distinct quark flavors that had been studied previously. In this case the U(1) gauge field trapped on the wall is exactly massless because it is the Goldstone boson of a U(1) symmetry in the bulk spontaneously broken on the wall. The theory on the wall is in the Coulomb phase. We explain why the mechanism of confinement discussed in the first part of the paper does not work in this case, and strings are not formed on the walls.Comment: 55 pp; v2: several remarks adde

    Approaching Capacity at High-Rates with Iterative Hard-Decision Decoding

    Full text link
    A variety of low-density parity-check (LDPC) ensembles have now been observed to approach capacity with message-passing decoding. However, all of them use soft (i.e., non-binary) messages and a posteriori probability (APP) decoding of their component codes. In this paper, we show that one can approach capacity at high rates using iterative hard-decision decoding (HDD) of generalized product codes. Specifically, a class of spatially-coupled GLDPC codes with BCH component codes is considered, and it is observed that, in the high-rate regime, they can approach capacity under the proposed iterative HDD. These codes can be seen as generalized product codes and are closely related to braided block codes. An iterative HDD algorithm is proposed that enables one to analyze the performance of these codes via density evolution (DE).Comment: 22 pages, this version accepted to the IEEE Transactions on Information Theor

    Domain Lines as Fractional Strings

    Full text link
    We consider N=2 supersymmetric quantum electrodynamics (SQED) with 2 flavors, the Fayet--Iliopoulos parameter, and a mass term β\beta which breaks the extended supersymmetry down to N=1. The bulk theory has two vacua; at β=0\beta=0 the BPS-saturated domain wall interpolating between them has a moduli space parameterized by a U(1) phase σ\sigma which can be promoted to a scalar field in the effective low-energy theory on the wall world-volume. At small nonvanishing β\beta this field gets a sine-Gordon potential. As a result, only two discrete degenerate BPS domain walls survive. We find an explicit solitonic solution for domain lines -- string-like objects living on the surface of the domain wall which separate wall I from wall II. The domain line is seen as a BPS kink in the world-volume effective theory. We expect that the wall with the domain line on it saturates both the {1,0}\{1,0\} and the {1/2,1/2}\{{1/2},{1/2}\}b central charges of the bulk theory. The domain line carries the magnetic flux which is exactly 1/2 of the flux carried by the flux tube living in the bulk on each side of the wall. Thus, the domain lines on the wall confine charges living on the wall, resembling Polyakov's three-dimensional confinement.Comment: 28 pages, 13 figure, v2 typos fixed and reference adde

    An updated hydrocarbon photochemical model for the Jovian atmosphere from the troposphere through the homopause: A prelude to Galileo

    Get PDF
    A photochemical model for the atmosphere of Jupiter, including 1-D vertical eddy diffusive transport, was developed. It extends from the upper troposphere through the homopause. The hydrocarbon chemistry involves species containing up to four carbon atoms (and polyynes through C8H2). The calculations show that a large fraction of photochemical carbon may be contained in molecules with more than two carbon atoms. At the tropopause, C2H6 is the major photochemical species and C2H2, C3H8, and C4H10 are of comparable abundance and down from C2H6 by a factor of ten. These species may be detectable with the mass spectrometer of the Galileo Probe. The vertical distributions of the photochemical species are sensitive to the magnitude of eddy diffusive mixing in the troposphere and stratosphere and the details of the interface region

    Interactive grid generation for turbomachinery flow field simulations

    Get PDF
    The control point form of algebraic grid generation presented provides the means that are needed to generate well structured grids for turbomachinery flow simulations. It uses a sparse collection of control points distributed over the flow domain. The shape and position of coordinate curves can be adjusted from these control points while the grid conforms precisely to all boundaries. An interactive program called TURBO, which uses the control point form, is being developed. Basic features of the code are discussed and sample grids are presented. A finite volume LU implicit scheme is used to simulate flow in a turbine cascade on the grid generated by the program

    Dynamics of local grid manipulations for internal flow problems

    Get PDF
    The control point method of algebraic grid generation is briefly reviewed. The review proceeds from the general statement of the method in 2-D unencumbered by detailed mathematical formulation. The method is supported by an introspective discussion which provides the basis for confidence in the approach. The more complex 3-D formulation is then presented as a natural generalization. Application of the method is carried out through 2-D examples which demonstrate the technique
    corecore