19 research outputs found

    Picosecond Dynamics Of Surface Water As A Function Of Hydrophobicity

    Get PDF

    Why is THz Sensitive to Protein Functional States? Oxidation State of Cytochrome C

    Get PDF
    Abstract: We investigate the presence of structural collective motions on a picosecond time scale for the heme protein, cytochrome c, as a function of oxidation and hydration, using terahertz (THz) time-domain spectroscopy and molecular dynamics simulations. Structural collective mode frequencies have been calculated to lie in this frequency range, and the density of states can be considered a measure of flexibility. A dramatic increase in the THz response occurs with oxidation, with the largest increase for lowest hydrations and highest frequencies. For both oxidation states the measured THz response rapidly increases with hydration saturating above ~25% (g H 2 O/g protein), in contrast to the rapid turn-on in dynamics observed at this hydration level for other proteins. Quasi-harmonic collective vibrational modes and dipole-dipole correlation functions are calculated from the molecular dynamics trajectories. The collective mode density of states alone reproduces the measured hydration dependence providing strong evidence of the existence of these collective motions. The large oxidation dependence is reproduced only by the dipole-dipole correlation function, indicating the contrast arises from diffusive motions consistent with structural changes occurring in the vicinity of a buried internal water molecule

    Protein Dynamical Transition in Terahertz Dielectric Response

    Full text link
    The 200 K protein dynamical transition is observed for the first time in the teraherz dielectric response. The complex dielectric permittivity ϵ\epsilon = ϵ\epsilon' + iϵ\epsilon" is determined in the 0.2 - 2.0 THz and 80-294 K ranges. ϵ\epsilon" has a linear temperature dependence up to 200 K then sharply increases. The low temperature linear dependence in ϵ\epsilon" indicates anharmonicity for temperatures 80 K < T < 180 K, challenging the assumed harmonicity below 200K. The temperature dependence is consistent with beta relaxation response and shows the protein motions involved in the dynamical transition extend to subpicosecond time scales

    Evidence Of Protein Collective Motions On The Picosecond Time Scale

    Get PDF
    We investigate the presence of structural collective motions on a picosecond time scale for the heme protein, cytochrome c, as a function of oxidation and hydration, using terahertz (THz) time-domain spectroscopy and molecular dynamics simulations. The THz response dramatically increases with oxidation, with the largest increase for lowest hydrations and highest frequencies. For both oxidation states the THz response rapidly increases with hydration saturating above ~25% (g H2O/g protein). Quasi-harmonic vibrational modes and dipole-dipole correlation functions are calculated from molecular dynamics trajectories. The collective mode density of states alone reproduces the measured hydration dependence providing strong evidence of the existence of these motions. The large oxidation dependence is reproduced only by the dipole-dipole correlation function, indicating the contrast arises from diffusive motions consistent with structural changes occurring in the vicinity of a buried internal water molecule

    Phage Therapy as a Promising New Treatment for Lung Infection Caused by Carbapenem-Resistant Acinetobacter baumannii in Mice

    No full text
    Carbapenem-resistant Acinetobacter baumannii (CRAB) which is noted as a major pathogen associated with healthcare-associated infections has steadily developed beyond antibiotic control. Lytic bacteriophages with the characteristics of infecting and lysing specific bacteria have been used as a potential alternative to traditional antibiotics to solve multidrug-resistant bacterial infections. Here, we isolated A. baumannii-specific lytic phages and evaluated their potential therapeutic effect against lung infection caused by CRAB clinical strains. The combined lysis spectrum of four lytic phages’ ranges was 87.5% (42 of 48) against CRAB clinical isolates. Genome sequence and analysis indicated that phage SH-Ab15519 is a novel phage which does not contain the virulence or antibiotic resistance genes. In vivo study indicated that phage SH-Ab15519 administered intranasally can effectively rescue mice from lethal A. baumannii lung infection without deleterious side effects. Our work explores the potential use of phages as an alternative therapeutic agent against the lung infection caused by CRAB strains

    Restoration processes of pollution zones in Hanjiang River

    No full text
    Two pollution zones in middle and lower reaches of Hanjiang River were selected for studying restoration processes. In each zones 6 stations were set up in upper stream of sewage outfall, 50m, 100 or 150m, 250 or 525m and 1250 or 3500m apart from the outfall. Chemical monitoring and microbial community biomonitoring were carried out simultaneously. Either the chemical monitoring or the biological monitoring proved the self-purification process of water body along with the increased distance from the sewage outfall. 4 biological parameters (species number of protozoa, percentage of phytomatigophora, diversity index and heterotrophy index) and parameter Seq of the colonization process all have statistically significant correlations with chemical comprehensive pollution indexes Pa and Pb
    corecore