14 research outputs found
Generic bounds on dipolar gravitational radiation from inspiralling compact binaries
Various alternative theories of gravity predict dipolar gravitational
radiation in addition to quadrupolar radiation. We show that gravitational wave
(GW) observations of inspiralling compact binaries can put interesting
constraints on the strengths of the dipole modes of GW polarizations. We put
forward a physically motivated gravitational waveform for dipole modes, in the
Fourier domain, in terms of two parameters: one which captures the relative
amplitude of the dipole mode with respect to the quadrupole mode () and
the other a dipole term in the phase (). We then use this two parameter
representation to discuss typical bounds on their values using GW measurements.
We obtain the expected bounds on the amplitude parameter and the phase
parameter for Advanced LIGO (AdvLIGO) and Einstein Telescope (ET) noise
power spectral densities using Fisher information matrix. AdvLIGO and ET may at
best bound to an accuracy of and and
to an accuracy of and respectively.Comment: Matches with the published versio
Environmental effects for gravitational-wave astrophysics
The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, "firewalls" and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically OH their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy
Dynamical Boson Stars
The idea of stable, localized bundles of energy has strong appeal as a model
for particles. In the 1950s John Wheeler envisioned such bundles as smooth
configurations of electromagnetic energy that he called {\em geons}, but none
were found. Instead, particle-like solutions were found in the late 1960s with
the addition of a scalar field, and these were given the name {\em boson
stars}. Since then, boson stars find use in a wide variety of models as sources
of dark matter, as black hole mimickers, in simple models of binary systems,
and as a tool in finding black holes in higher dimensions with only a single
killing vector. We discuss important varieties of boson stars, their dynamic
properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in
Relativity; major revision in 201
Exploring new physics frontiers through numerical relativity
The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology
Recommended from our members
NR/HEP: roadmap for the future
Physics in curved spacetime describes a multitude of phenomena, ranging from astrophysics to high energy physics. The last few years have witnessed further progress on several fronts, including the accurate numerical evolution of the gravitational field equations, which now allows highly nonlinear phenomena to be tamed. Numerical relativity simulations, originally developed to understand strong field astrophysical processes, could prove extremely useful to understand high-energy physics processes like trans-Planckian scattering and gauge-gravity dualities. We present a concise and comprehensive overview of the state-of-the-art and important open problems in the field(s), along with guidelines for the next years. This writeup is a summary of the "NR/HEP Workshop" held in Madeira, Portugal from August 31st to September 3rd 2011