392 research outputs found

    Constraining the evolutionary history of Newton's constant with gravitational wave observations

    Full text link
    Space-borne gravitational wave detectors, such as the proposed Laser Interferometer Space Antenna, are expected to observe black hole coalescences to high redshift and with large signal-to-noise ratios, rendering their gravitational waves ideal probes of fundamental physics. The promotion of Newton's constant to a time-function introduces modifications to the binary's binding energy and the gravitational wave luminosity, leading to corrections in the chirping frequency. Such corrections propagate into the response function and, given a gravitational wave observation, they allow for constraints on the first time-derivative of Newton's constant at the time of merger. We find that space-borne detectors could indeed place interesting constraints on this quantity as a function of sky position and redshift, providing a {\emph{constraint map}} over the entire range of redshifts where binary black hole mergers are expected to occur. A LISA observation of an equal-mass inspiral event with total redshifted mass of 10^5 solar masses for three years should be able to measure GË™/G\dot{G}/G at the time of merger to better than 10^(-11)/yr.Comment: 11 pages, 2 figures, replaced with version accepted for publication in Phys. Rev. D

    Quasinormal modes of slowly-rotating black holes in dynamical Chern-Simons gravity

    Get PDF
    The detection of gravitational waves from compact binary mergers by the LIGO/Virgo collaboration has, for the first time, allowed us to test relativistic gravity in its strong, dynamical and nonlinear regime, thus opening a new arena to confront general relativity (and modifications thereof) against observations. We consider a theory which modifies general relativity by introducing a scalar field coupled to a parity-violating curvature term known as dynamical Chern-Simons gravity. In this theory, spinning black holes are different from their general relativistic counterparts and can thus serve as probes to this theory. We study linear gravito-scalar perturbations of black holes in dynamical Chern-Simons gravity at leading-order in spin and (i) obtain the perturbed field equations describing the evolution of the perturbed gravitational and scalar fields, (ii) numerically solve these equations by direct integration to calculate the quasinormal mode frequencies for the dominant and higher multipoles and tabulate them, (iii) find strong evidence that these rotating black holes are linearly stable, and (iv) present general fitting functions for different multipoles for gravitational and scalar quasinormal mode frequencies in terms of spin and Chern-Simons coupling parameter. Our results can be used to validate the ringdown of small-spin remnants of numerical relativity simulations of black hole binaries in dynamical Chern-Simons gravity and pave the way towards future tests of this theory with gravitational wave ringdown observations

    Bumpy Black Holes in Alternate Theories of Gravity

    Full text link
    We generalize the bumpy black hole framework to allow for alternative theory deformations. We construct two model-independent parametric deviations from the Kerr metric: one built from a generalization of the quasi-Kerr and bumpy metrics and one built directly from perturbations of the Kerr spacetime in Lewis-Papapetrou form. We find the conditions that these "bumps" must satisfy for there to exist an approximate second-order Killing tensor so that the perturbed spacetime still possesses three constants of the motion (a deformed energy, angular momentum and Carter constant) and the geodesic equations can be written in first-order form. We map these parameterized metrics to each other via a diffeomorphism and to known analytical black hole solutions in alternative theories of gravity. The parameterized metrics presented here serve as frameworks for the systematic calculation of extreme-mass ratio inspiral waveforms in parameterized non-GR theories and the investigation of the accuracy to which space-borne gravitational wave detectors can constrain such deviations.Comment: 17 pages, replaced with version published in Phys. Rev.

    Constraining Lorentz-violating, Modified Dispersion Relations with Gravitational Waves

    Full text link
    Modified gravity theories generically predict a violation of Lorentz invariance, which may lead to a modified dispersion relation for propagating modes of gravitational waves. We construct a parametrized dispersion relation that can reproduce a range of known Lorentz-violating predictions and investigate their impact on the propagation of gravitational waves. A modified dispersion relation forces different wavelengths of the gravitational wave train to travel at slightly different velocities, leading to a modified phase evolution observed at a gravitational-wave detector. We show how such corrections map to the waveform observable and to the parametrized post-Einsteinian framework, proposed to model a range of deviations from General Relativity. Given a gravitational-wave detection, the lack of evidence for such corrections could then be used to place a constraint on Lorentz violation. The constraints we obtain are tightest for dispersion relations that scale with small power of the graviton's momentum and deteriorate for a steeper scaling.Comment: 11 pages, 3 figures, 2 tables: title changed slightly, published versio

    Extreme Mass-Ratio Inspirals in the Effective-One-Body Approach: Quasi-Circular, Equatorial Orbits around a Spinning Black Hole

    Full text link
    We construct effective-one-body waveform models suitable for data analysis with LISA for extreme-mass ratio inspirals in quasi-circular, equatorial orbits about a spinning supermassive black hole. The accuracy of our model is established through comparisons against frequency-domain, Teukolsky-based waveforms in the radiative approximation. The calibration of eight high-order post-Newtonian parameters in the energy flux suffices to obtain a phase and fractional amplitude agreement of better than 1 radian and 1 % respectively over a period between 2 and 6 months depending on the system considered. This agreement translates into matches higher than 97 % over a period between 4 and 9 months, depending on the system. Better agreements can be obtained if a larger number of calibration parameters are included. Higher-order mass ratio terms in the effective-one-body Hamiltonian and radiation-reaction introduce phase corrections of at most 30 radians in a one year evolution. These corrections are usually one order of magnitude larger than those introduced by the spin of the small object in a one year evolution. These results suggest that the effective-one-body approach for extreme mass ratio inspirals is a good compromise between accuracy and computational price for LISA data analysis purposes.Comment: 21 pages, 8 figures, submitted to Phys. Rev.

    Improved gravitational-wave constraints on higher-order curvature theories of gravity

    Get PDF
    Gravitational wave observations of compact binaries allow us to test general relativity (and modifications thereof) in the strong and highly-dynamical field regime of gravity. Here we confront two extensions to general relativity, dynamical Chern-Simons and Einstein-dilaton-Gauss-Bonnet theories, against the gravitational wave sources from the GWTC-1 and GWTC-2 catalogs by the LIGO-Virgo Collaboration. By stacking the posterior of individual events, we strengthen the constraint on the square root of the coupling parameter in Einstein-dilaton-Gauss-Bonnet gravity to αEdGB<1.7\sqrt{\alpha_{\rm \tiny EdGB}} < 1.7 km, but we are unable to place meaningful constraints on dynamical Chern-Simons gravity. Importantly, we also show that our bounds are robust to (i) the choice of general-relativity base waveform model, upon which we add modifications, (ii) unknown higher post-Newtonian order terms in the modifications to general relativity, (iii) the small-coupling approximation, and (iv) uncertainties on the nature of the constituent compact objects

    Spin-induced dynamical scalarization, de-scalarization and stealthness in scalar-Gauss-Bonnet gravity during black hole coalescence

    Get PDF
    Particular couplings between a scalar field and the Gauss-Bonnet invariant lead to spontaneous scalarization of black holes. Here we continue our work on simulating this phenomenon in the context of binary black hole systems. We consider a negative coupling for which the black-hole spin plays a major role in the scalarization process. We find two main phenomena: (i) dynamical descalarization, in which initially scalarized black holes form an unscalarized remnant, and (ii) dynamical scalarization, whereby the late merger of initially unscalarized black holes can cause scalar hair to grow. An important consequence of the latter case is that modifications to the gravitational waveform due to the scalar field may only occur post-merger, as its presence is hidden during the entirety of the inspiral. However, with a sufficiently strong coupling, we find that scalarization can occur before the remnant has even formed. We close with a discussion of observational implications for gravitational-wave tests of general relativity

    Black hole sensitivities in Einstein-scalar-Gauss-Bonnet gravity

    Get PDF
    The post-Newtonian dynamics of black hole binaries in Einstein-scalar-Gauss-Bonnet theories of gravity depends on the so-called "sensitivities", quantities which characterize a black hole's adiabatic response to the time-dependent scalar field environment sourced by its companion. In this work, we calculate numerically the sensitivities of nonrotating black holes, including spontaneously scalarized ones, in three classes of Einstein-scalar-Gauss-Bonnet gravity: the shift-symmetric, dilatonic and Gaussian theories. When possible, we compare our results against perturbative analytical results, finding excellent agreement. Unlike their general relativistic counterparts, black holes in Einstein-scalar-Gauss-Bonnet gravity only exist in a restricted parameter space controlled by the theory's coupling constant. A preliminary study of the role played by the sensitivities in black hole binaries suggests that, in principle, black holes can be driven outside of their domain of existence during the inspiral, for binary parameters which we determine

    The Role of Strong Gravity and the Nuclear Equation of State on Neutron-Star Common-Envelope Accretion

    Get PDF
    Common-envelope evolution is important in the formation of neutron star binaries within the isolated binary formation channel. As a neutron star inspirals within the envelope of a primary massive star, it accretes and spins up. Because neutron stars are in the strong-gravity regime, they have a substantial relativistic mass deficit, i.e., their gravitational mass is less than their baryonic mass. This effect causes some fraction of the accreted baryonic mass to convert into neutron star binding energy. The relativistic mass deficit also depends on the nuclear equation of state, since more compact neutron stars will have larger binding energies. We model the mass growth and spin-up of neutron stars inspiraling within common-envelope environments and quantify how different initial binary conditions and hadronic equations of state affect the post-common-envelope neutron star's mass and spin. From these models, we find that neutron star mass growth is suppressed by ≈15−30%\approx 15-30\%. We also find that for a given amount of accreted baryonic mass, more compact neutron stars will spin-up faster while gaining less gravitational mass, and vice versa. This work demonstrates that a neutron star's strong gravity and nuclear microphysics plays a role in neutron-star-common-envelope evolution, in addition to the macroscopic astrophysics of the envelope. Strong gravity and the nuclear equation of state may thus affect both the population properties of neutron star binaries and the cosmic double neutron star merger rate

    Astrophysical and theoretical physics implications from multimessenger neutron star observations

    Get PDF
    The Neutron Star Interior Composition Explorer (NICER) recently measured the mass and equatorial radius of the isolated neutron star PSR J0030+0451. We use these measurements to infer the moment of inertia, the quadrupole moment, and the surface eccentricity of an isolated neutron star for the first time, using relations between these quantities that are insensitive to the unknown equation of state of supranuclear matter. We also use these results to forecast the moment of inertia of neutron star A in the double pulsar binary J0737-3039, a quantity anticipated to be directly measured in the coming decade with radio observations. Combining this information with the measurement of the tidal Love number with LIGO/Virgo observations, we propose and implement the first theory-agnostic and equation-of-state-insensitive test of general relativity. Specializing these constraints to a particular modified theory, we find that consistency with general relativity places the most stringent constraint on gravitational parity violation to date, surpassing all other previously reported bounds by seven orders of magnitude and opens the path for future a test of general relativity with multimessenger neutron star observations
    • …
    corecore