1,191 research outputs found

    Arrhythmia surgery for atrial fibrillation associated with atrial septal defect: Right-sided maze versus biatrial maze

    Get PDF
    BackgroundAlthough it has been inferred that a biatrial maze procedure for atrial fibrillation in left-sided heart lesions may lead to better outcomes compared with a limited left atrial lesion set, it remains controversial whether the biatrial maze procedure is superior to the right atrial maze procedure in right-sided heart lesions.MethodsA retrospective review was performed for 56 adults who underwent surgical closure of atrial septal defect and various maze procedures for atrial fibrillation between June 1998 and February 2011. The median age at operation was 59 years (range, 34-79 years). Clinical manifestations of atrial fibrillation were paroxysmal in 8 patients, persistent in 15 patients, and long-standing persistent in 33 patients. A right atrial maze procedure was performed in 23 patients (group 1), and a biatrial maze procedure was performed in 33 patients (group 2). Treatment failure was defined as atrial fibrillation recurrence, development of atrial flutter or other types of atrial tachyarrhythmia, or implantation of a permanent pacemaker. The Cox proportional hazards model was used to identify risk factors for decreased time to treatment failure.ResultsDuring the median follow-up period of 49 months (range, 5-149 months), there was no early death and 1 late noncardiac death. On Cox survival model, group 1 showed a significantly decreased time to treatment failure in comparison with group 2 (hazard ratio, 5.11; 95% confidence interval, 1.59-16.44; P = .006). Maintenance of normal sinus rhythm without any episode of atrial fibrillation recurrence at 2 and 5 years postoperatively was 57% and 45% in group 1, respectively, and 82% and 69% in group 2, respectively.ConclusionsLeft-sided ablation in addition to a right atrial maze procedure leads to better electrophysiologic outcome in atrial fibrillation associated with atrial septal defect

    Structural abnormalities in benign childhood epilepsy with centrotemporal spikes (BCECTS)

    Get PDF
    AbstractPurposeThe aim of this study was to investigate cortical thickness and gray matter volume abnormalities in benign childhood epilepsy with centrotemporal spikes (BCECTS). We additionally assessed the effects of comorbid attention-deficit/hyperactivity (ADHD) on these abnormalities.MethodsSurface and volumetric MR imaging data of children with newly diagnosed BCECTS (n=20, 14 males) and age-matched healthy controls (n=20) were analyzed using FreeSurfer (version 5.3.0, https://surfer.nmr.mgh.harvard.edu). An additional comparison was performed between BCECTS children with and without ADHD (each, n=8). A group comparison was carried out using an analysis of covariance with a value of significance set as p<0.01 or p<0.05.ResultsChildren with BCECTS had significantly thicker right superior frontal, superior temporal, middle temporal, and left pars triangularis cortices. Voxel-based morphometric analysis revealed significantly larger cortical gray matter volumes of the right precuneus, left orbitofrontal, pars orbitalis, precentral gyri, and bilateral putamen and the amygdala of children with BCECTS compared to healthy controls. BCECTS patients with ADHD had significantly thicker left caudal anterior and posterior cingulate gyri and a significantly larger left pars opercularis gyral volume compared to BCECTS patients without ADHD.ConclusionChildren with BCECTS have thicker or larger gray matters in the corticostriatal circuitry at the onset of epilepsy. Comorbid ADHD is also associated with structural aberrations. These findings suggest structural disruptions of the brain network are associated with specific developmental electro-clinical syndromes

    Stretchable and reflective displays: materials, technologies and strategies

    Get PDF
    Displays play a significant role in delivering information and providing visual data across all media platforms. Among displays, the prominence of reflective displays is increasing, in the form of E-paper, which has features distinct from emissive displays. These unique features include high visibility under daylight conditions, reduced eye strain and low power consumption, which make them highly effective for outdoor use. Furthermore, such characteristics enable reflective displays to achieve high synergy in combination with wearable devices, which are frequently used for outdoor activities. However, as wearable devices must stretch to conform to the dynamic surfaces of the human body, the issue of how to fabricate stretchable reflective displays should be tackled prior to merging them with wearable devices. In this paper, we discuss stretchable and reflective displays. In particular, we focus on reflective displays that can be divided into two types, passive and active, according to their responses to stretching. Passive displays, which consist of dyes or pigments, exhibit consistent colors under stretching, while active displays, which are based on mechanochromic materials, change their color under the same conditions. We will provide a comprehensive overview of the materials and technologies for each display type, and present strategies for stretchable and reflective displays.This research was supported by Nano Material Technology Development Program through the National Research Foundation of Korea(NRF) funded by Ministry of Science and ICT (NRF2018M3A7B4089670). D.Y.K. is supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (NRF-2016-Global Ph.D. Fellowship Program)

    PD-1 deficiency protects experimental colitis via alteration of gut microbiota

    Get PDF
    Programmed cell death-1 (PD-1) is a coinhibitory molecule and plays a pivotal role in immune regulation. Here, we demonstrate a role for PD-1 in pathogenesis of inflammatory bowel disease (IBD). Wild-type (WT) mice had severe wasting disease during experimentally induced colitis, while mice deficient for PD-1 (PD-1(-/-)) did not develop colon inflammation. Interestingly, PD-1(-/-) mice cohoused with WT mice became susceptible to colitis, suggesting that resistance of PD-1(-/-) mice to colitis is dependent on their gut microbiota. 16S rRNA gene-pyrosequencing analysis showed that PD-1(-/-) mice had altered composition of gut microbiota with significant reduction in Rikenellaceae family. These altered colon bacteria of PD-1(-/-) mice induced less amount of inflammatory mediators from colon epithelial cells, including interleukin (IL)-6, and inflammatory chemokines. Taken together, our study indicates that PD-1 expression is involved in the resistance to experimental colitis through altered bacterial communities of colon.112Ysciescopuskc

    Potassium chloride elicits enhancement of bilobalide and Ginkgolides production by Ginkgo biloba cell cultures

    Get PDF
    This study investigated the ability of potassium chloride (KCl) to elicit the production of bilobalide (BB), ginkgolide A (GA) and ginkgolide B (GB) by Ginkgo biloba cell suspension cultures. The salt stress by KCl treatments increased production of BB, GA and GB in both suspended cells and cultured medium. Especially, treatment of KCl 800 mM of highest concentration was stimulated emission into cultured medium BB, GA and GB compounds accumulated in cells. Although KCl 800 mM severely inhibited cells growth, the maximum content of GA and GB in cells was obtained in the treatment of KCl 800 mM, which was 1.9 and 4.0 times higher than the control. These results thus suggest that salt stress can afford enhanced production of secondary metabolites by plant cell cultures

    Intravenous levetiracetam versus phenobarbital in children with status epilepticus or acute repetitive seizures

    Get PDF
    PurposeThis study compared the efficacy and tolerability of intravenous (i.v.) phenobarbital (PHB) and i.v. levetiracetam (LEV) in children with status epilepticus (SE) or acute repetitive seizure (ARS).MethodsThe medical records of children (age range, 1 month to 15 years) treated with i.v. PHB or LEV for SE or ARS at our single tertiary center were retrospectively reviewed. Seizure termination was defined as seizure cessation within 30 minutes of infusion completion and no recurrence within 24 hours. Information on the demographic variables, electroencephalography and magnetic resonance imaging findings, previous antiepileptic medications, and adverse events after drug infusion was obtained.ResultsThe records of 88 patients with SE or ARS (median age, 18 months; 50 treated with PHB and 38 with LEV) were reviewed. The median initial dose of i.v. PHB was 20 mg/kg (range, 10–20 mg/kg) and that of i.v. LEV was 30 mg/kg (range, 20–30 mg/kg). Seizure termination occurred in 57.9% of patients treated with i.v. LEV (22 of 38) and 74.0% treated with i.v. PHB (37 of 50) (P=0.111). The factor associated with seizure termination was the type of event (SE vs. ARS) in each group. Adverse effects were reported in 13.2% of patients treated with i.v. LEV (5 of 38; n=4, aggressive behavior and n=1, vomiting), and 28.0% of patients treated with i.v. PHB (14 of 50).ConclusionIntravenous LEV was efficacious and safe in children with ARS or SE. Further evaluation is needed to determine the most effective and best-tolerated loading dose of i.v. LEV

    Continuous Spatial Tuning of Laser Emissions in a Full Visible Spectral Range

    Get PDF
    In order to achieve a continuous tuning of laser emission, the authors designed and fabricated three types of cholesteric liquid crystal cells with pitch gradient, a wedge cell with positive slope, a wedge cell with negative slope, and a parallel cell. The length of the cholesteric liquid crystal pitch could be elongated up to 10 nm, allowing the lasing behavior of continuous or discontinuous spatial tuning determined by the boundary conditions of the cholesteric liquid crystal cell. In the wedge cell with positive slope, the authors demonstrated a continuous spatial laser tuning in the near full visible spectral range, with a tuning resolution less than 1 nm by pumping with only a single 355 nm laser beam. This continuous tuning behavior is due to the fact that the concentration of pitch gradient matches the fixed helical pitch determined by the cell thickness. This characteristic continuous spatial laser tuning could be confirmed again by pumping with a 532 nm laser beam, over 90 nm in the visible spectral range. The scheme of the spatial laser tuning in the wedge cell bearing a pitch gradient enabled a route to designing small-sized optical devices that allow for a wide tunability of single-mode laser emissions

    Agonistic Anti-CD137 Monoclonal Antibody Treatment Induces CD11b+Gr-1+ Myeloid-derived Suppressor Cells

    Get PDF
    CD137 (4-1BB/tnfrsf9) has been shown to co-stimulate T cells. However, agonistic anti-CD137 monoclonal antibody (mAb) treatment can suppress CD4+ T cells, ameliorating autoimmune diseases, whereas it induces activation of CD8+ T cells, resulting in diverse therapeutic activity in cancer, viral infection. To investigate the CD137-mediated T cell suppression mechanism, we examined whether anti-CD137 mAb treatment could affect CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs). Intriguingly, anti-CD137 mAb injection significantly increased CD11b+Gr-1+ cells, peaking at days 5 to 10 and continuing for at least 25 days. Furthermore, this cell population could suppress both CD8+ T cells and CD4+ T cells. Thus, this study demonstrated that, for the first time, anti-CD137 mAb treatment could induce CD11b+Gr-1+ MDSCs under normal conditions, suggesting a possible relationship between myeloid cell induction and CD137-mediated immune suppression

    Growth differentiation factor 11 locally controls anterior-posterior patterning of the axial skeleton.

    Get PDF
    Growth and differentiation factor 11 (GDF11) is a transforming growth factor β family member that has been identified as the central player of anterior-posterior (A-P) axial skeletal patterning. Mice homozygous for Gdf11 deletion exhibit severe anterior homeotic transformations of the vertebrae and craniofacial defects. During early embryogenesis, Gdf11 is expressed predominantly in the primitive streak and tail bud regions, where new mesodermal cells arise. On the basis of this expression pattern of Gdf11 and the phenotype of Gdf11 mutant mice, it has been suggested that GDF11 acts to specify positional identity along the A-P axis either by local changes in levels of signaling as development proceeds or by acting as a morphogen. To further investigate the mechanism of action of GDF11 in the vertebral specification, we used a Cdx2-Cre transgene to generate mosaic mice in which Gdf11 expression is removed in posterior regions including the tail bud, but not in anterior regions. The skeletal analysis revealed that these mosaic mice display patterning defects limited to posterior regions where Gdf11 expression is deficient, whereas displaying normal skeletal phenotype in anterior regions where Gdf11 is normally expressed. Specifically, the mosaic mice exhibited seven true ribs, a pattern observed in wild-type (wt) mice (vs. 10 true ribs in Gdf11-/- mice), in the anterior axis and nine lumbar vertebrae, a pattern observed in Gdf11 null mice (vs. six lumbar vertebrae in wt mice), in the posterior axis. Our findings suggest that GDF11, rather than globally acting as a morphogen secreted from the tail bud, locally regulates axial vertebral patterning
    corecore