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A B S T R A C T

Purpose: The aim of this study was to investigate cortical thickness and gray matter volume

abnormalities in benign childhood epilepsy with centrotemporal spikes (BCECTS). We additionally

assessed the effects of comorbid attention-deficit/hyperactivity (ADHD) on these abnormalities.

Methods: Surface and volumetric MR imaging data of children with newly diagnosed BCECTS (n = 20, 14

males) and age-matched healthy controls (n = 20) were analyzed using FreeSurfer (version 5.3.0, https://

surfer.nmr.mgh.harvard.edu). An additional comparison was performed between BCECTS children with

and without ADHD (each, n = 8). A group comparison was carried out using an analysis of covariance

with a value of significance set as p < 0.01 or p < 0.05.

Results: Children with BCECTS had significantly thicker right superior frontal, superior temporal, middle

temporal, and left pars triangularis cortices. Voxel-based morphometric analysis revealed significantly

larger cortical gray matter volumes of the right precuneus, left orbitofrontal, pars orbitalis, precentral

gyri, and bilateral putamen and the amygdala of children with BCECTS compared to healthy controls.

BCECTS patients with ADHD had significantly thicker left caudal anterior and posterior cingulate gyri and

a significantly larger left pars opercularis gyral volume compared to BCECTS patients without ADHD.

Conclusion: Children with BCECTS have thicker or larger gray matters in the corticostriatal circuitry at

the onset of epilepsy. Comorbid ADHD is also associated with structural aberrations. These findings

suggest structural disruptions of the brain network are associated with specific developmental electro-

clinical syndromes.

� 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Idiopathic focal epilepsies are often regarded as a developmen-
tal disorder, in which the normal developmental trajectory of a
focal region in the brain might be disturbed, resulting in seizures
and comorbid neuropsychiatric problems [1]. In benign childhood
epilepsy with centrotemporal spikes (BCECTS), the marked age-
specific onset and remission of electroclinical features, comorbid
behavioral and cognitive problems, and genetic predisposition
strongly suggest altered brain maturation [1–5]. To further
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understand developmental disorders of this nature, magnetic
resonance imaging (MRI) analysis techniques have been used to
identify the microstructural alterations of the brain in children
with idiopathic focal epilepsy including BCECTS [6–8]. However,
the reported profiles of abnormal structures were inconsistent
among these studies, and the exact morphological changes or
correct localization of the associated structures in children with
idiopathic epilepsy are still unknown. Although several studies
have reported widely distributed alterations of brain structure in
children with BCECTS at the onset of epilepsy [9–13], the causal
relationship between structural variations of the brain, seizures,
medication effects, and comorbid neuropsychiatric problems
remains unsolved.

We performed our present case-control study to identify the
abnormal cortical structures associated with BCECTS using auto-
mated measures of cross-sectional brain MRI scans. In addition, we
compared the cortical thickness and gray matter volume across
served.
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BCECTS patients with and without attention-deficit/hyperactivity
(ADHD) at the time of diagnosis of BCECTS to evaluate potential
structural–functional correlations.

2. Materials and methods

2.1. Subjects

Twenty patients (14 males, mean age at diagnosis, 7.5 � 1.5
years; range, 5.6–10.2) with newly diagnosed BCECTS were enrolled
who presented between 2007 and 2013 to Asan Medical Center
Children’s Hospital. BCECTS was clinically diagnosed by pediatric
neurologists according to the International League Against Epilepsy
classification (1989). Inclusion criteria were: (1) no epilepsy other
than BCECTS; (2) no other neurologic disease; (3) intelligence
quotient within normal limits; (4) normal standard clinical brain
MRI; (5) not receiving antiepileptic drugs at the time of the MRI study.
Twenty healthy controls (14 males, mean age, 7.4 � 1.5 years; range,
5.0–10.1) were also recruited between 2011 and 2013.

All subjects underwent sleep electroencephalograms (EEGs)
before the initiation of antiepileptic drugs. To confirm the
laterality of the spike discharges, EEG recordings were prolonged
until the stage II sleep were confirmed by the technician. The
laterality of interictal centrotemporal spike discharges on sleep
EEGs was evaluated by three board-licensed pediatric neurolo-
gists (TS Ko, MS Yum, and EH Kim). Considering the known
association between handedness and the structural and func-
tional lateralization of brain, handedness was also reviewed. The
presence or absence of ADHD at the time of diagnosis of BCECTS
was also evaluated. ADHD was clinically diagnosed by a pediatric
psychiatrist based on the Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition (DSM-IV) criteria of ADHD: the
diagnosis of ADHD was made when more than six out of nine
symptoms of inattention or hyperactivity–impulsivity had
persisted for at least 6 months based on the questionnaire of
ADHD symptoms for patients. The rating scales for ADHD were not
performed in all of them. All eight patients diagnosed with ADHD
did not receive the ADHD medication at the time of the brain MRI
study. The cortical thickness and gray matter volume were
compared between BCECTS patients with (n = 8, 6 males, mean
age at diagnosis, 7.4 � 1.4 years; range, 5.9–9.3) with age-, sex-
matched patients without ADHD (n = 8, 6 males, mean age at
diagnosis, 7.6 � 1.8 years; range, 5.7–9.8).

Our study protocol was approved by the Institutional Review
Board of Asan Medical Center, Ulsan University College of
Medicine, Korea. As all subjects were too young to consent, all
informed consents were given by their parents.

2.2. Image acquisition

MRI scans were obtained on a Philips 3T Achieva scanner
(Philips Healthcare, Eindhoven, The Netherlands). Three-dimen-
sional whole brain T1 sequence imaging was acquired with the
following image parameters: echo time, TE = 4.6 ms; repetition
time, TR = 9.8 ms; flip angle, FA = 8.08; field of view = 224 mm, slice
thickness = 1 mm, sagittal images of the entire brain with in-plane
resolution 1.0 mm � 1.0 mm. MRI exams were evaluated by a
pediatric neuroradiologist (HK Yoon) who was blind to both to the
disease status of the subjects and to the study hypothesis.

2.3. Image analysis

FreeSurfer (version 5.3.0, https://surfer.nmr.mgh.harvard.edu)
was used for two types of measurement: cortical thickness and
partial brain volume (volumes of voxels, global or regional brain
volumes). The procedure followed was similar to that described in
previous studies [14–17]. After correcting for intensity variations, a
normalized intensity image was generated and the skull was
removed from the normalized image. A connected components
algorithm was then used for the preliminary segmentation, and
any interior holes in the components representing white matter
were filled. A constructed polygonal surface model was applied to
obtain a representation of the gray/white matter boundary and the
pial surface after a refinement procedure. Above automatic cortical
reconstruction and parcellation technique was used to subdivide
each hemisphere into 34 gyral labels [18,19].

2.4. Statistical analysis

Group differences in demographic, clinical, and conventional
MRI imaging variables were assessed using the Kruskal–Wallis and
the Mann–Whitney U tests for continuous variables and the Fisher
exact test for categorical variables (SPSS, version 18.0; SPSS Inc.,
Chicago, IL). A comparison on the morphology data between the
groups was investigated using Freesurfer’s build-in GLM tool,
Qdec. All Qdec results were corrected for multiple comparisons
using the built-in tool for assessment of the cluster size p-value.
These multiple-comparisons corrected results were considered
significant at a significance threshold of p < 0.01. In an additional
analysis for differences between BCECTS patients with and without
ADHD the significance threshold was set at p < 0.05.

3. Results

3.1. Subject characteristics

The mean age at seizure onset in children with BCECTS was
6.9 � 1.7 years (range, 3.3–9.1), and the mean seizure frequency in
the year prior to diagnosis was 3.8 � 1.3 (range, 1–5) times per year.
Centrotemporal spike discharges on EEG at diagnosis were right-
sided in four patients, left-sided in eight patients, and bilateral in
eight patients. There were no statistical differences in body mass
indices or total brain volumes between BCECTS patients and healthy
controls. Both groups showed age-related cortical thinning and
reduction of gray matter volume across the entire cortex (Fig. 1).
Fourteen BCECTS patients were right-handed, two were left-handed,
and the handedness of four was unknown; 14 control subjects were
right-handed, two were left-handed, two were ambidextrous, and
two had unknown handedness.

3.2. Cortical thickness and gray matter volumes of the BCECTS

patients and controls

In patients with BCECTS the mean cortical thickness of both
hemispheres and the regional gray matter volumes of cortical,
subcortical and limbic structures showed a tendency toward
greater values compared to the control subjects (Fig. 1). Regional
analysis of cortical thicknesses revealed that they were signifi-
cantly greater on the right superior frontal gyrus (p = 0.005), the
right superior and middle temporal gyri (p = 0.001), and the
left pars triangularis gyrus (p = 0.004) in BCECTS patients than in
the controls (Fig. 2). Compared to control subjects, BCECTS
subjects also had larger volumes of cortical gray matter of the
right precuneus gyrus (p < 0.001), the left orbitofrontal gyrus
(p = 0.004), the left pars orbitalis gyrus (p = 0.001), and the
left precentral gyrus (p = 0.006) (Fig. 3). Group differences in
the regional gray matter volumes of subcortical and limbic
structures are displayed in Table S1 and Fig. 4. Patients with
BCECTS displayed significantly larger volumes of the bilateral
putamen and amygdala (both p < 0.01) compared to the healthy
controls (Fig. 4).
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Fig. 1. Scatter plots and trend lines of the mean cortical thickness and gray matter (GM) volume of both cerebral hemispheres according to age at MRI evaluation in BCECTS

patients and control subjects. Both groups show age-related cortical thinning and reduction of gray matter volume.
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Supplementary Table S1 related to this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.seizure.2015.
02.027.

3.3. Subgroup comparison analysis of the BCECTS patients according

to their comorbid ADHD

The mean cortical thickness of both hemispheres and the total
gray matter volumes of cortical, subcortical and limbic structures
showed no significant differences between BCECTS patients with
ADHD and those without ADHD (Fig. 5A). After matching for age
and gender, BCECTS patients with ADHD (n = 8) were shown to
possess significantly thicker left caudal anterior (p = 0.021) and
posterior cingulate gyri (p = 0.011) and a significantly larger left
pars opercularis gyral volume (p = 0.034) compared to BCECTS
patients without ADHD (Fig. 5B and C). The regional gray matter
volume of subcortical and limic structures between two groups
was not significantly different.

4. Discussion

In our current study, we found that BCECTS patients had
significantly thicker cortices in the right superior frontal, the right
superior and middle temporal, and the left pars triangularis gyrus
than control subjects. BCECTS patients also displayed a larger
regional gray matter volume in the right precuneus gyrus, the left
prefrontal region, the left precentral gyrus and bilateral putamen
and amygdala [12]. The involved structures were not only the
precentral area among the rolandic area, but also the broad
corticostriatal circuits. Recent structural imaging studies of
BCECTS have revealed widely distributed morphological abnor-
malities in cortical and subcortical structures [9–11]. Along with
previous studies, the affected regions identified in present study
were more extensive than Rolandic areas that generate centro-
temporal spikes and were unlikely to be a direct consequence of
epileptiform activity. To explain these abnormalities outside the
seizure onset zone, it has been previously suggested that the
propagation of epileptiform discharges through an underlying
network induce the secondary pathology of distal cortical regions
as well as white matter [12,13]. These multiple structural
alterations of the brain in patients with BCECTS also support the
hypothetical relationship between the altered maturation of brain
associated with interictal epileptic activity and behavioral and
cognitive dysfunction. Discordances between the results of the
thickness analysis and those of voxel-based morphometric
analysis can be explained by the difference between two- and
three-dimensional measures, where the latter is also associated
with the network topology [20,21]. Previous research also revealed
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Fig. 2. Regional differences of cortical thickness between patients with BCECTS and healthy control subjects (p < 0.01). (A) Representative views are shown with a color-coded

depiction of abnormalities. Regions of thicker cortices are shown in red to yellow (color coded according to t value). (B) The right superior frontal, temporal, middle temporal,

and left pars triangulate gyri of patients with BCECTS patients are significantly thicker than those of the controls. Comparisons of cortical thicknesses (mm) are presented as

boxplots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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significant hypertrophy and shape deformities of the putamen [9]
and increases in the bilateral fronto-temporal surface and volume
[11] in children with BCECTS which is consistent with our current
findings.

Normal brain development during childhood includes age-
related structural changes, resulting from selective elimination of
Fig. 3. Illustration of regional differences of cortical gray matter volume between BCECTS

abnormalities is shown. Regions of increased cortical gray matter volumes are shown in

orbitofrontal, pars orbitalis, precentral, and right precuneus gyri displayed a larger volu

mm3. (For interpretation of the references to color in this figure legend, the reader is r
neurons (cortical pruning) and increasing myelination [22]. Lon-
gitudinal quantitative MRI investigations of healthy children have
also demonstrated age- and region-specific declines in cortical
thickness and cerebral gray matter volume along with a
concomitant increase in cerebral white matter volume, directly
reflecting this neurodevelopmental process [23,24]. Although
 patients and healthy control subjects (p < 0.01). (A) A color-coded depiction of the

 red to yellow (color coded according to t value) (B) In the BCECTS patients, the left

me of cortical gray matter (GM) compared to the controls. Volumes are depicted in

eferred to the web version of this article.)



Fig. 4. Regional differences in subcortical and limbic gray matter (GM) volumes in patients with BCECTS compared with healthy control subjects (p < 0.01). The bilateral

putamen and amygdala of BCECTS patients is larger than those of the controls. The analyzed subcortical GM included the caudate, pallidum, thalamus and limbic structures

include the hippocampus and amygdala. Volumes are in mm3.
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these cross-sectional data do not allow any conclusions regarding a
relationship between age and development of gray matter, an age
dependent decline of gray matter was noticed in both patient and
controls in our current investigation. Moreover, the decline of gray
matter volume in old age appeared to be delayed in the affected
group. The affected areas we here identified are not the same as
those described by previous studies, our current results suggest a
broad structural abnormality of brain development, which exists at
the diagnosis of epilepsy, in BCECTS [11]. However, it remains
unclear whether this finding is a result of the delayed subtractive
process including synaptic pruning or of the developmental
network abnormality including occult or very subtle dysplasia.
A recent study, however, suggests delayed developmental
processes of patients with BCECTS in which the increased bilateral
fronto-temporal surface and volume reverts to normal values at
remission [11].

The superior frontal and the pars triangularis gyri are involved
in higher cognitive and executive functions [25,26], and the
superior and middle temporal gyri have a key role in attentional
processing of verbal stimuli and ADHD pathophysiology
[27,28]. The precuneus gyrus, bilateral putamen, and amygdala
belong to a widespread cortical and subcortical network of
executive function, self-processing, and visuospatial imagery
[29], and the orbitofrontal and pars orbitalis gyri are important
neuroanatomical regions involved in adaptive learning and
speech–language production [30]. The higher incidence of learning
and behavioral difficulties, language delay, attention deficits, and
hyperactive–impulsive symptoms in patients with BCECTS may be
associated with this underlying microstructural pathology. How-
ever, our present study was limited in its ability to discern this
because the incidence of neuropsychiatric diseases was not
compared between subjects with BCECTS and controls.

The observed regional pattern of cortical thickness and gray
matter volume abnormalities is also influenced by the presence of
ADHD. BCECTS patients with ADHD showed cortical thickening in
the left caudal anterior and posterior cingulate gyri and increased
volume of cortical gray matter in the left pars opercularis
compared to BCECTS patients without ADHD. The anterior and
posterior cingulate gyri are mainly involved in supporting
internally directed cognition, in modulation of emotional
responses, and in attentional processing [31,32]. The pars
opercularis is critical for speech and language functions [30,33].

A previous MRI study in children with epilepsy and ADHD [34]
reported bilateral thinning in the frontal, parietal, and temporal
lobes with diminution of subcortical structures similar to the
findings of several previous MRI studies in children with ADHD
alone [35–37]. Although our current results for ADHD in children
with BCECTS identified different abnormalities from a previous



Fig. 5. Subgroup comparisons of cortical thickness and gray matter (GM) volume among patients with BCECTS according to their comorbid ADHD (p < 0.05). (A) Scatter plots

of the mean cortical thickness and gray matter (GM) volume of both cerebral hemispheres according to age at MRI evaluation in BCECTS patients with ADHD and those

without ADHD. (B) Representative views are shown with a color-coded depiction of the abnormalities. Regions of thicker cortices are shown in red to yellow (color coded

according to t value). (C) The left caudal anterior cingulate, left posterior cingulate, and left pars opercularis gyri of BCECTS patients with ADHD are significantly thicker than

those without ADHD. Thickness and volumes are shown in mm and mm3, respectively. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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study of children with epilepsy and ADHD [34], the inclusion of
heterogeneous types of epilepsy in that previous study may
account for these differences. These structural alterations in ADHD
patients disappear during adolescence [38] likewise supporting
the paradigm of a delayed neurodevelopmental process leading
to ADHD. Longitudinal studies with large and diagnostically
homogeneous clinical samples would help to confirm the clinical
significance of our study.

This was a cross-sectional study with a number of limitations
including small subject numbers and inter-subject variability. The
variable time interval between the onset of seizure and the brain
MRI study and comorbid psychiatric problems other than ADHD
could be possible confounding factors. As we described above,
brain volume is critically affected by the age and the volumetric
analysis should be based on the age-matched samples. Small
sample size including patients with various age limited the critical
evaluation of handedness and laterality of centrotemporal spikes
on the brain volumes. Another limitation is the lack of
comprehensive neuropsychological examination in diagnosis of
ADHD. Although abnormal gray matter volume or cortical
thickness in BCECTS represents an altered trajectory in cortical
development, these cross-sectional findings cannot demonstrate
the causality. Longitudinal studies at multiple time points with
neurocognitive measurements would further advance the under-
standing of the abnormal trajectories of BCECTS and their
relationship with cognitive and behavioral functions.

5. Conclusion

Children with BCECTS demonstrate thicker cortices and a larger
cortico-striatal gray matter. Moreover, among children with
BCECTS, children with ADHD possess a thicker left cingulate
cortex and a larger left pars opercularis volume. This altered
trajectory in cortical development in children with BCECTS
suggests a structural–functional correlation of idiopathic focal
epilepsies and indicates a need for a prospective and longitudinal
controlled study using brain MRI analysis in these cases.
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