107 research outputs found

    Perspective Chapter: Uptake Capacity of Metals (Al, Cu, Pb, Sn, Zn) in Contaminated Water Metal Production Trade Village Dong Xam, Thai Binh, Vietnam by <em>Vetiveria zizanioides</em>

    Get PDF
    This chapter describes experiments, carried out under controlled environment conditions to investigate the uptake capacity of metals (Al, Cu, Pb, Sn, and Zn) by Vetiveria zizanioides to treat contaminated water from “metal production trade village Dong Xam, Thai Binh, Vietnam.” The roots have a high hyperaccumulation capacity of Al, and it is much more than “reference plant” about 17- up to 30-folds, and the upper parts of shoots S2, and S3 are higher 1.2-fold. In vetiver plant the Cu concentration can be obtained up to 660 mg/kg in root, and 46.2 mg/kg in shoot, and it can withstand and be alive at 46 mg/L of contaminated solution. The lead translocation from root to shoot reached to about 41%. The tin is absorbed in the leaf chop with ratio: Root varied from 82% up to ∼277% in the leaf chop. The zinc may be moved from roots and accumulated by the shoots of vetiver. The ratio shoot: root gets up to 46%. The study shows that vetiver had the high tolerance to trace metals Al, Cu, Pb, Sn, and Zn than other species plants. This plant has potential for usage in the phytoremediation of metals contaminated soil and wastewater from trade villages of Vietnam and other countries

    Aberrant phenotypes of transgenic mice expressing dimeric human erythropoietin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dimeric human erythropoietin (dHuEPO) peptides are reported to exhibit significantly higher biological activity than the monomeric form of recombinant EPO. The objective of this study was to produce transgenic (tg) mice expressing dHuEPO and to investigate the characteristics of these mice.</p> <p>Methods</p> <p>A dHuEPO-expressing vector under the control of the goat beta-casein promoter, which produced a dimer of human EPO molecules linked by a 2-amino acid peptide linker (Asp-Ile), was constructed and injected into 1-cell fertilized embryos by microinjection. Mice were screened using genomic DNA samples obtained from tail biopsies. Blood samples were obtained by heart puncture using heparinized tubes, and hematologic parameters were assessed. Using the microarray analysis tool, we analyzed differences in gene expression in the spleens of tg and control mice.</p> <p>Results</p> <p>A high rate of spontaneous abortion or death of the offspring was observed in the recipients of dHuEPO embryos. We obtained 3 founder lines (#4, #11, and #47) of tg mice expressing the <it>dHuEPO </it>gene. However, only one founder line showed stable germline integration and transmission, subsequently establishing the only transgenic line (#11). We obtained 2 F1 mice and 3 F2 mice from line #11. The dHuEPO protein could not be obtained because of repeated spontaneous abortions in the tg mice. Tg mice exhibited symptoms such as short lifespan and abnormal blood composition. The red blood cell count, white blood cell count, and hematocrit levels in the tg mice were remarkably higher than those in the control mice. The spleens of the tg mice (F1 and F2 females) were 11- and -21-fold larger than those of the control mice. Microarray analysis revealed 2,672 spleen-derived candidate genes; more genes were downregulated than upregulated (849/764). Reverse transcriptase-polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qRT-PCR) were used for validating the results of the microarray analysis of mRNA expression.</p> <p>Conclusions</p> <p>In conclusion, dHuEPO tg mice caused excessive erythrocytosis that led to abnormal blood composition, short lifespan, and abnormal splenomegaly. Further, we identified 2,672 genes associated with splenomegaly by microarray analysis. These results could be useful in the development of dHuEPO-producing tg animals.</p

    Uptake capacity of metals (Al, Cu, Pb, Sn, Zn) by Vetiveria Zizanioides in contaminated water in the Dong Xam metal production trade village, Thai Binh, Vietnam

    Get PDF
    This study presents an experiment of metal contaminated water treatment under controlled environment conditions to investigate the uptake capacity of metals by Vetiveria Zizanioides to treat contaminated water from a metal production trade village, Dong Xam, Thai Binh, Vietnam. Vetiver was grown in two pot culture experiments TB10, TB6 with solutions containing respective concentrations of Al, Cu, Pb, Sn and Zn of 2.5, 55.6, 0.15, 7.7 and 24.4 mg from contaminated water in the Dong Xam metal production trade village for a period of 36 days. Vetiver has the higher tolerance to Al, Cu, Pb, Sn and Zn than other plant species. The roots (hereafter R) are high Al hyperaccumulators, concentrating 17 up to 30 folds more than “reference plant”. The upper parts of shoots (hereafter S1, S2, and S3) are 1.2 folds higher. Cu concentration in the root and shoot is up to 660 and 46.2 mg/kg, respectively. Vetiver can withstand and survive at Cu concentration of 46 mg/L in contaminated water that is markedly higher than other plants that can last only in solution with Cu concentration ranging 20-100 mg/kg. The translocation of Pb from root to shoot was 41%. Sn is more accumulated in the top, in which shoot/root ratio varied from 82% to 277% in the top, and increased to the top (by order S3/RS2/RS1/R). Zn could be translocated from roots and accumulated in shoots of vetiver. The ratio shoot/root obtains up to 46%. The present results demonstrated that vetiver had the high tolerance to trace metals Al, Cu, Pb, Sn and Zn in vegetation. This plant has a potential phytoremediation of metals in contaminated soil and wastewater from trade villages of Vietnam and other countries.References Adriano D.C., 1992. Biochemistry of trace metals. Lewis Publishers. Boca Raton, New York. 513 pp. Baker D.E., 1976. Acid soils. In Proc. of Workshop on Plant Adaptation to Mineral Stress in Problem Soils. Wright J. Ed. Cornell University. Ithaca. No4, 127. Becker H., 1992. Hedging against erosion. Agric. Res. 12, p.8-10. Braude G.L., Nash A.M., Wols W.J., 1980. Cadmium and lead content of soybean products. J. Food Sci., 45, 1187. Broyer T.C., Johnson C.N. and Paull R.E., 1972. Some aspects of lead in plant nutrition. Plant Soil. V36, p.301. Chiu K.K., Ye Z.H., Wong M.H., 2005. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere, 60, p.1365-1375. Chiu K.K., Ye Z.H., Wong M.H., 2006. Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: A greenhouse study. Bioresource Technology, 97, p.158-170. Cull, R.H., Hunter, H., Hunter, M., and Truong, P.N.,  2000.  Application of Vetiver Grass Technology in off-site pollution control.  II.  Tolerance of Vetiver grass towards high levels of herbicides under wetland conditions.  Proceedings of the Second International Vetiver Conference, Phetchaburi, Thailand, January 2000. Dabin P., Marafante E. et al., 1978. Adsorption, distribution and binding of cadmium and zinc in irrigated rice plants. Plant soil, 50, p. 329. Foy C.D., Chaney R.L. and White M.C., 1978. The physiology of metal toxicity in plants. Annu. Rev. Physiol. 29, p.511. Frank R., Stonefield K.I. and Suda P. 1979. Metals in agricultural soils of Ontario. Can. J. Soil Sci., 59, p.99. Grimshaw R G., 1989. A review of existing soil conservation technologies, and a proposed method of soil conservation using contour farming practices backed by vetiver grass hedge barriers. In Proc. vetiver Grass Seminar at the Int. Agric. Centre in Wageningen, The Netherlands, January, 1989. Hung-Yu Lai, Zueng-Sang Chen, 2004. Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere, 55, p.421- 430. Jensen K., Stephenson G., Hunt, L., 1977. Detoxification of atrazine in three Gramineae subfamilies. Weed Sci. 25, p.212-220. Kabata-Pendias Alina and Pendias Henryk, 2001. Trace elements in soils and plants. 3rd ed. CRC Press, Inc. Boca Raton, Florida, 413pp. Leckie J. O. and Davis J. A., 1979. Aqueous environmental chemistry of copper. In Copper in Environment (ed. J. O. Nriagu). Wiley, New York, pp.90-121. Markert B., 1992. Establishing of “reference plant” for inorganic characterization of different plant species by chemical fingerprinting. Water, Air, and Soil Pollution, 64: p.533-538. Mejare M., Bulow L., 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in Biotechnology, 19, p.67-73. Mickovski S.B., Beek L.P.H van and Salin F., 2005. Uprooting of vetiver uprooting resistance of vetiver grass (Vetiveria zizanioides). Plant and Soil, 278, p.33-41. Rommey E.M., Wallace A., and Alexander G.V., 1975. response of bush bean and barley to tin applied to soil and to solution culture. Plant Soil, 42, p.585. Sanita di Toppi L, Gabbrielli R. 1999. Response to cadmium in higher plants. Environ Exp Bot; 41:p.105-130. Schlesinger W. H. 2004. Treatise on geochemistry. Volume 8 Biogeochemistry. Executive editors H. D. Holland and K. K. Turekian. First edition 2004. Elsevier-Pergamon, Oxford. Steven T. S., Paul R. A., Ricarda N. K., 1999. Aquaculture sludge removal and stabilization within created wetlands. Aquacult. Eng. 19, p.81-92. Sylvie M., Muriel R., Patrick R., Jean-Paul S., 2006. Conjugation of atrazine in vetiver (Chrysopogon zizanioides Nash) grown in hydroponics. Environmental and Exp. Botany, 56, p.205-215. Tordoff G.M., Baker, A.J.M., Willis, A.J., 2000. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 41, p.219-228. Truong P. and Loch R., 2004. Vetiver System for erosion and sediment control. In Proc. 13th International Soil Conservation Organisation Conference, Brisbane, Australia, July 2004. pp.1-6. Truong P.N., 1996. Vetiver grass for land rehabilitation. In: Proceedings of the First International Vetiver Conferences, Thailand, pp.49-56. Truong P.N. and Baker D., 1998. Vetiver Grass System for Environmental Protection. Technical Bulletin N0. 1998/1.  Pacific Rim Vetiver Network, Office of the Royal Development Projects Board, Bangkok, Thailand. Truong P.N. and Hart B., 2001.  Vetiver System for Wastewater Treatment. Technical Bulletin NO. 2001/2.  Pacific Rim Vetiver Network, Office of the Royal Development Projects Board, Bangkok, Thailand. Veldkamp J. F., 1999. A revision of Chrysopogon Trin., including Vetiveria Bory (Poaceae) in Thailand and Malesia with notes on some other species from Africa and Australia. Austrobaileya 5: p.522-523. Wilde E.W., Brigmon R.L., Dunn D.L., Heitkamp M.A., Dagnan D.C., 2005. Phytoextraction of lead from firing range soil by Vetiver grass. Chemosphere, 61, p.1451-1457. World Bank, 1990. Vetiver Grass - The Hedge Against Erosion, 3rd ed. Washington D.C. Xia H.P., 2004. Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land. Chemosphere, 54, p.345-353. Yahua C., Zhenguo S., Xiangdong L., 2004. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry, 19, p.1553-1565. Yang B., Shu W.S., Ye Z.H., Lan C.Y., Wong M.H., 2003. Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere, 52, p.1593-1600. Zhang J., 1998. Benefit and application future of sandy soils on windy Pingtan island. In: Vetiver Research and Development. Agricultural Science and Technology Press, China, pp.179-191. Zimdahl R.L., 1975. Entry and movement in vegetation of lead derived from air and soil sources. Paper presented at 68th Annu. Meeting of the Air Pollution Control Association, Boston, Mass., June 15, 1975, 2.

    β-Lapachone Significantly Increases the Effect of Ionizing Radiation to Cause Mitochondrial Apoptosis via JNK Activation in Cancer Cells

    Get PDF
    β-lapachone (β-lap), has been known to cause NQO1-dependnet death in cancer cells and sensitize cancer cells to ionizing radiation (IR). We investigated the mechanisms underlying the radiosensitization caused by β-lap. cells induced ROS generation, triggered ER stress and stimulated activation of ERK and JNK. Inhibition of ROS generation by NAC effectively attenuated the activation of ERK and JNK, induction of ER stress, and subsequent apoptosis. Importantly, inhibition of ERK abolished ROS generation and ER stress, whereas inhibition of JNK did not, indicating that positive feedback regulation between ERK activation and ROS generation triggers ER stress in response to combined treatment. Furthermore, prevention of ER stress completely blocked combination treatment-induced JNK activation and subsequent apoptotic cell death. In addition, combined treatment efficiently induced the mitochondrial translocation of cleaved Bax, disrupted mitochondrial membrane potential, and the nuclear translocation of AIF, all of which were efficiently blocked by a JNK inhibitor. Caspases 3, 8 and 9 were activated by combined treatment but inhibition of these caspases did not abolish apoptosis indicating caspase activation played a minor role in the induction of apoptosis. cells are treated with combination of IR and β-lap, positive feedback regulation between ERK and ROS leads to ER stress causing JNK activation and mitochondrial translocation of cleaved Bax. The resultant decrease in mitochondrial membrane leads to translocation of AIF and apoptosis

    Pancreatic serous cystadenocarcinoma with invasive growth into the colon and spleen

    Get PDF
    Serous cystic neoplasms of the pancreas are almost always benign lesions. However, there are some case reports of malignant serous neoplasms of the pancreas. It is very difficult to distinguish malignant and benign tumors. Indeed, only clinicopathologic findings of locoregional invasion and metastasis represent a malignancy. We report a serous cystadenocarcinoma of the pancreas that was initially considered to be colon cancer. Post-operatively, the tumor was confirmed to be a malignant serous cystic tumor of the pancreas. One year later, the patient remains disease-free

    Expression of aldo-keto reductase family 1 member C1 (AKR1C1) gene in porcine ovary and uterine endometrium during the estrous cycle and pregnancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aldo-keto reductase family 1 member C1 (AKR1C1) belongs to a superfamily of NADPH-dependent reductases that convert a wide range of substrates, including carbohydrates, steroid hormones, and endogenous prostaglandins. The 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) is a member of AKR family. The aims of this study were to determine its expression in the ovary and uterus endometrium during the estrous cycle and pregnancy.</p> <p>Methods</p> <p>Rapid amplification of cDNA ends (RACE) experiments were performed to obtain the 5' and 3' ends of the porcine <it>20alpha-HSD </it>cDNA. Reverse-transcriptase-PCR (RT-PCR), real-time PCR, northern blot analysis, and western blot analysis were performed to examine the expression of porcine 20alpha-HSD. Immunohistochemical analysis was also performed to determine the localization in the ovary.</p> <p>Results</p> <p>The porcine 20alpha-HSD cDNA is 957 bp in length and encodes a protein of 319 amino acids. The cloned cDNA was virtually the same as the porcine <it>AKR1C1 </it>gene (337 amino acids) reported recently, and only differed in the C-terminal region (the <it>AKR1C1 </it>gene has a longer C-terminal region than our sequence). The <it>20alpha-HSD </it>gene (from now on referred to as <it>AKR1C1</it>) cloned in this paper encodes a deletion of 4 amino acids, compared with the C-terminal region of <it>AKR1C1 </it>genes from other animals. Porcine AKR1C1 mRNA was expressed on day 5, 10, 12, 15 of the cycle and 0-60 of pregnancy in the ovary. The mRNA was also specifically detected in the uterine endometrium on day 30 of pregnancy. Western blot analysis indicated that the pattern of AKR1C1 protein in the ovary during the estrous cycle and uterus during early pregnancy was similar to that of <it>AKR1C1 </it>mRNA expression. The recombinant protein produced in CHO cells was detected at approximately 37 kDa. Immunohistochemical analysis also revealed that pig AKR1C1 protein was localized in the large luteal cells in the early stages of the estrous cycle and before parturition.</p> <p>Conclusions</p> <p>Our study demonstrated that AKR1C1 mRNA and protein are coordinately expressed in the luteal cell of ovary throughout the estrous cycle and in the uterus on day 30 of pregnancy. Thus, the porcine AKR1C1 gene might control important mechanisms during the estrous cycle.</p

    Comparative proteomic analysis of malformed umbilical cords from somatic cell nuclear transfer-derived piglets: implications for early postnatal death

    Get PDF
    Background: Somatic cell nuclear transfer (scNT)-derived piglets have high rates of mortality, including stillbirth and postnatal death. Here, we examined severe malformed umbilical cords (MUC), as well as other organs, from nine scNT-derived term piglets. Results: Microscopic analysis revealed complete occlusive thrombi and the absence of columnar epithelial layers in MUC (scNT-MUC) derived from scNT piglets. scNT-MUC had significantly lower expression levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) and angiogenesis-related genes than umbilical cords of normal scNT piglets (scNT-N) that survived into adulthood. Endothelial cells derived from scNT-MUC migrated and formed tubules more slowly than endothelial cells from control umbilical cords or scNT-N. Proteomic analysis of scNT-MUC revealed significant down-regulation of proteins involved in the prevention of oxidative stress and the regulation of glycolysis and cell motility, while molecules involved in apoptosis were significantly up-regulated. Histomorphometric analysis revealed severe calcification in the kidneys and placenta, peliosis in the liver sinusoidal space, abnormal stromal cell proliferation in the lungs, and tubular degeneration in the kidneys in scNT piglets with MUC. Increased levels of apoptosis were also detected in organs derived from all scNT piglets with MUC. Conclusion: These results suggest that MUC contribute to fetal malformations, preterm birth and low birth weight due to underlying molecular defects that result in hypoplastic umbilical arteries and/or placental insufficiency. The results of the current study demonstrate the effects of MUC on fetal growth and organ development in scNT-derived pigs, and provide important insight into the molecular mechanisms underlying angiogenesis during umbilical cord development
    corecore