529 research outputs found

    Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages

    Get PDF
    Apicomplexan protozoan pathogens avoid destruction and establish a replicative niche within host cells by forming a nonfusogenic parasitophorous vacuole (PV). Here we present evidence for lysosome-mediated degradation of Toxoplasma gondii after invasion of macrophages activated in vivo. Pathogen elimination was dependent on the interferon Îł inducible-p47 GTPase, IGTP, required PI3K activity, and was preceded by PV membrane indentation, vesiculation, disruption, and, surprisingly, stripping of the parasite plasma membrane. Denuded parasites were enveloped in autophagosome-like vacuoles, which ultimately fused with lysosomes. These observations outline a series of mechanisms used by effector cells to redirect the fate of a classically nonfusogenic intracellular pathogen toward a path of immune elimination

    Frustrated two-dimensional Josephson junction array near incommensurability

    Full text link
    To study the properties of frustrated two-dimensional Josephson junction arrays near incommensurability, we examine the current-voltage characteristics of a square proximity-coupled Josephson junction array at a sequence of frustrations f=3/8, 8/21, 0.382 (≈(3−5)/2)(\approx (3-\sqrt{5})/2), 2/5, and 5/12. Detailed scaling analyses of the current-voltage characteristics reveal approximately universal scaling behaviors for f=3/8, 8/21, 0.382, and 2/5. The approximately universal scaling behaviors and high superconducting transition temperatures indicate that both the nature of the superconducting transition and the vortex configuration near the transition at the high-order rational frustrations f=3/8, 8/21, and 0.382 are similar to those at the nearby simple frustration f=2/5. This finding suggests that the behaviors of Josephson junction arrays in the wide range of frustrations might be understood from those of a few simple rational frustrations.Comment: RevTex4, 4 pages, 4 eps figures, to appear in Phys. Rev.

    Experimental determination of the effective strong coupling constant

    Get PDF
    We present a first attempt to experimentally extract an effective strong coupling constant that we define to be a low Q2 extension of a previous definition by S. Brodsky et al. following an initial work of G. Grunberg. Using Jefferson Lab data and sum rules, we establish its Q2-behavior over the complete Q2-range. The result is compared to effective coupling constants inferred from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constants and the calculations is not established it is interesting to note that their behaviors are similar.Comment: Published in Physics Letters B 650 4 24

    Melting behavior of ultrathin titanium nanowires

    Get PDF
    The thermal stability and melting behavior of ultrathin titanium nanowires with multi-shell cylindrical structures are studied using molecular dynamic simulation. The melting temperatures of titanium nanowires show remarkable dependence on wire sizes and structures. For the nanowire thinner than 1.2 nm, there is no clear characteristic of first-order phase transition during the melting, implying a coexistence of solid and liquid phases due to finite size effect. An interesting structural transformation from helical multi-shell cylindrical to bulk-like rectangular is observed in the melting process of a thicker hexagonal nanowire with 1.7 nm diameter.Comment: 4 pages, 4 figure

    A Note on Inflation with Tachyon Rolling on the Gauss-Bonnet Brane

    Full text link
    In this paper we study the tachyonic inflation in brane world cosmology with Gauss-Bonnet term in the bulk. We obtain the exact solution of slow roll equations in case of exponential potential. We attempt to implement the proposal of Lidsey and Nunes, astro-ph/0303168, for the tachyon condensate rolling on the Gauss-Bonnet brane and discuss the difficulties associated with the proposal.Comment: RevTex4, 5 pages, no figures, Minor clarifications added and references updated, To appear in PR

    Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV

    Full text link
    The three-body photodisintegration of 3He has been measured with the CLAS detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first time to cover a wide momentum and angular range for the two outgoing protons. Three kinematic regions dominated by either two- or three-body contributions have been distinguished and analyzed. The measured cross sections have been compared with results of a theoretical model, which, in certain kinematic ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications: removed 2 figures, improvements on others, a few minor modifications to the tex

    eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV

    Full text link
    Differential cross sections for the reaction gamma p -> eta-prime p have been measured with the CLAS spectrometer and a tagged photon beam with energies from 1.527 to 2.227 GeV. The results reported here possess much greater accuracy than previous measurements. Analyses of these data indicate for the first time the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710) resonances, known to couple strongly to the eta N channel in photoproduction on the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure

    Measurement of the Deuteron Structure Function F2 in the Resonance Region and Evaluation of Its Moments

    Full text link
    Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasi-elastic peak up to the invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasi-elastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behaviour of the higher twist contribution suggests a partial cancellation of different higher twists entering into the expansion with opposite signs. This cancellation, found also in the proton moments, is a manifestation of the "duality" phenomenon in the F2 structure function
    • 

    corecore