13,421 research outputs found

    Brane Inflation from Rotation of D4 Brane

    Full text link
    In this paper, a inflationary model from the rotation of D4-brane is constructed. We show that for a very wide rage of parameter, this model satisfies the observation and find that regarded as inflaton, the rotation of branes may be more nature than the distance between branes. Our model offers a new avenue for brane inflation.Comment: 6 pages, no figure

    The dust emission SED of X-ray emitting regions in Stephan's Quintet

    Get PDF
    We analysed the Spitzer maps of Stephan's Quintet in order to investigate the nature of the dust emission associated with the X-ray emitting regions of the large scale intergalactic shock and of the group halo. This emission can in principle be powered by dust-gas particle collisions, thus providing efficient cooling of the hot gas. However the results of our analysis suggest that the dust emission from those regions is mostly powered by photons. Nonetheless dust collisional heating could be important in determining the cooling of the IGM gas and the large scale star formation morphology observed in SQ.Comment: Conference proceedings IAU Symposium 284 "The Spectral energy distribution of galaxies", 5-9 September 2011, Preston, U

    The star formation efficiency in Stephan's Quintet intragroup regions

    Get PDF
    We investigated the star formation efficiency for all the dust emitting sources in Stephan's Quintet (SQ). We inferred star formation rates using Spitzer MIR/FIR and GALEX FUV data and combined them with gas column density measurements by various authors, in order to position each source in a Kennicutt-Schmidt diagram. Our results show that the bright IGM star formation regions in SQ present star formation efficiencies consistent with those observed within local galaxies. On the other hand, star formation in the intergalactic shock region seems to be rather inhibited.Comment: Conference proceedings "Galaxy Mergers in an evolving Universe", 23-28 October 2011, Hualien, Taiwa

    Powerful High Velocity-Dispersion Molecular Hydrogen Associated with an Intergalactic Shock Wave in Stephan's Quintet

    Get PDF
    We present the discovery of strong mid-infrared emission lines of molecular hydrogen of apparently high velocity dispersion (~870 km/s) originating from a group-wide shock wave in Stephan's Quintet. These Spitzer Space Telescope observations reveal emission lines of molecular hydrogen and little else. this is the first time an almost pure H_2 line spectrum has been seen in an extragalactic object. Along with the absence of PAH features and very low excitation ionized gas tracers, the spectra resemble shocked gas seen in Galactic supernova remnants, but on a vast scale. The molecular emission extends over 24 kpc along the X-ray emitting shock-front, but has ten times the surface luminosity as the soft X-rays, and about one-third the surface luminosity of the IR continuum. We suggest that the powerful H_2 emission is generated by the shock wave caused when a high-velocity intruder galaxy collides with filaments of gas in the galaxy group. Our observations suggest a close connection between galaxy-scale shock-waves and strong broad H_2 emission lines, like those seen in the spectra of Ultraluminous Infrared Galaxies where high-speed collisions between galaxy disks are common.Comment: 4 pages, 4 figures and 1 tabl

    The AzTEC mm-Wavelength Camera

    Get PDF
    AzTEC is a mm-wavelength bolometric camera utilizing 144 silicon nitride micromesh detectors. Herein we describe the AzTEC instrument architecture and its use as an astronomical instrument. We report on several performance metrics measured during a three month observing campaign at the James Clerk Maxwell Telescope, and conclude with our plans for AzTEC as a facility instrument on the Large Millimeter Telescope.Comment: 13 pages, 15 figures, accepted for publication in Monthly Notice

    Powerful H2_2 Line-cooling in Stephan's Quintet : I - Mapping the Significant Cooling Pathways in Group-wide Shocks

    Get PDF
    We present results from the mid-infrared spectral mapping of Stephan's Quintet using the Spitzer Space Telescope. A 1000 km/s collision has produced a group-wide shock and for the first time the large-scale distribution of warm molecular hydrogen emission is revealed, as well as its close association with known shock structures. In the main shock region alone we find 5.0 ×108\times10^{8} M_{\odot} of warm H2_2 spread over \sim 480 kpc2^2 and additionally report the discovery of a second major shock-excited H2_2 feature. This brings the total H2_2 line luminosity of the group in excess of 1042^42 erg/s. In the main shock, the H2_2 line luminosity exceeds, by a factor of three, the X-ray luminosity from the hot shocked gas, confirming that the H2_2-cooling pathway dominates over the X-ray. [Si II]34.82μ\mum emission, detected at a luminosity of 1/10th of that of the H2_2, appears to trace the group-wide shock closely and in addition, we detect weak [FeII]25.99μ\mum emission from the most X-ray luminous part of the shock. Comparison with shock models reveals that this emission is consistent with regions of fast shocks (100 < VsV_{s} < 300 km/s) experiencing depletion of iron and silicon onto dust grains. Star formation in the shock (as traced via ionic lines, PAH and dust emission) appears in the intruder galaxy, but most strikingly at either end of the radio shock. The shock ridge itself shows little star formation, consistent with a model in which the tremendous H2_{2} power is driven by turbulent energy transfer from motions in a post-shocked layer. The significance of the molecular hydrogen lines over other measured sources of cooling in fast galaxy-scale shocks may have crucial implications for the cooling of gas in the assembly of the first galaxies.Comment: 23 pages, 15 figures, Accepted to Ap

    Strong Far-IR Cooling Lines, Peculiar CO Kinematics and Possible Star Formation Suppression in Hickson Compact Group 57

    Get PDF
    We present [C II] and [O I] observations from Herschel and CO(1-0) maps from the Combined Array for{\dag} Research in Millimeter Astronomy (CARMA) of the Hickson Compact Group HCG 57, focusing on the galaxies HCG 57a and HCG 57d. HCG 57a has been previously shown to contain enhanced quantities of warm molecular hydrogen consistent with shock and/or turbulent heating. Our observations show that HCG 57d has strong [C II] emission compared to LFIR_{\rm FIR} and weak CO(1-0), while in HCG 57a, both the [C II] and CO(1-0) are strong. HCG 57a lies at the upper end of the normal distribution of [C II]/CO and [C II]/FIR ratios, and its far-IR cooling supports a low density warm diffuse gas that falls close to the boundary of acceptable PDR models. However, the power radiated in the [C II] and warm H2_2 emission have similar magnitudes, as seen in other shock-dominated systems and predicted by recent models. We suggest that shock-heating of the [C II] is a viable alternative to photoelectric heating in violently disturbed diffuse gas. The existence of shocks is also consistent with peculiar CO kinematics in the galaxy, indicating highly non-circular motions are present. These kinematically disturbed CO regions also show evidence of suppressed star formation, falling a factor of 10-30 below normal galaxies on the Kennicutt-Schmidt relation. We suggest that the peculiar properties of both galaxies are consistent with a highly dissipative off-center collisional encounter between HCG 57d and 57a, creating ring-like morphologies in both systems. Highly dissipative gas-on-gas collisions may be more common in dense groups because of the likelihood of repeated multiple encounters. The possibility of shock-induced SF suppression may explain why a subset of these HCG galaxies have been found previously to fall in the mid-infrared green valley.Comment: ApJ accepted, 16 pages, 12 figures, 3 table

    The velocity peaks in the cold dark matter spectrum on Earth

    Full text link
    The cold dark matter spectrum on earth is expected to have peaks in velocity space. We obtain estimates for the sizes and locations of these peaks. To this end we have generalized the secondary infall model of galactic halo formation to include angular momentum of the dark matter particles. This new model is still spherically symmetric and it has self-similar solutions. Our results are relevant to direct dark matter search experiments.Comment: 12 pages including 1 table and 4 figures, LaTeX, REVTEX 3.0 versio

    The secondary infall model of galactic halo formation and the spectrum of cold dark matter particles on Earth

    Get PDF
    The spectrum of cold dark matter particles on Earth is expected to have peaks in velocity space associated with particles which are falling onto the Galaxy for the first time and with particles which have fallen in and out of the Galaxy only a small number of times in the past. We obtain estimates for the velocity magnitudes and the local densities of the particles in these peaks. To this end we use the secondary infall model of galactic halo formation which we have generalized to take account of the angular momentum of the dark matter particles. The new model is still spherically symmetric and it admits self-similar solutions. In the absence of angular momentum, the model produces flat rotation curves for a large range of values of a parameter ϵ\epsilon which is related to the spectrum of primordial density perturbations. We find that the presence of angular momentum produces an effective core radius, i.e. it makes the contribution of the halo to the rotation curve go to zero at zero radius. The model provides a detailed description of the large scale properties of galactic halos including their density profiles, their extent and total mass. We obtain predictions for the kinetic energies of the particles in the velocity peaks and estimates for their local densities as functions of the amount of angular momentum, the age of the universe and ϵ\epsilon.Comment: LaTeX, 39 pages including 18 figure
    corecore