18 research outputs found

    Mapping proteins to disease terminologies: from UniProt to MeSH

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the UniProt KnowledgeBase is not a medical-oriented database, it contains information on more than 2,000 human proteins involved in pathologies. However, these annotations are not standardized, which impairs the interoperability between biological and clinical resources. In order to make these data easily accessible to clinical researchers, we have developed a procedure to link diseases described in the UniProtKB/Swiss-Prot entries to the MeSH disease terminology.</p> <p>Results</p> <p>We mapped disease names extracted either from the UniProtKB/Swiss-Prot entry comment lines or from the corresponding OMIM entry to the MeSH. Different methods were assessed on a benchmark set of 200 disease names manually mapped to MeSH terms. The performance of the retained procedure in term of precision and recall was 86% and 64% respectively. Using the same procedure, more than 3,000 disease names in Swiss-Prot were mapped to MeSH with comparable efficiency.</p> <p>Conclusions</p> <p>This study is a first attempt to link proteins in UniProtKB to the medical resources. The indexing we provided will help clinicians and researchers navigate from diseases to genes and from genes to diseases in an efficient way. The mapping is available at: <url>http://research.isb-sib.ch/unimed</url>.</p

    Easy retrieval of single amino-acid polymorphisms and phenotype information using SwissVar

    Get PDF
    Summary: The SwissVar portal provides access to a comprehensive collection of single amino acid polymorphisms and diseases in the UniProtKB/Swiss-Prot database via a unique search engine. In particular, it gives direct access to the newly improved Swiss-Prot variant pages. The key strength of this portal is that it provides a possibility to query for similar diseases, as well as the underlying protein products and the molecular details of each variant. In the context of the recently proposed molecular view on diseases, the SwissVar portal should be in a unique position to provide valuable information for researchers and to advance research in this area. Availability: The SwissVar portal is available at www.expasy.org/swissvar Contact: [email protected]; [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    SSMap: A new UniProt-PDB mapping resource for the curation of structural-related information in the UniProt/Swiss-Prot Knowledgebase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequences and structures provide valuable complementary information on protein features and functions. However, it is not always straightforward for users to gather information concurrently from the sequence and structure levels. The UniProt knowledgebase (UniProtKB) strives to help users on this undertaking by providing complete cross-references to Protein Data Bank (PDB) as well as coherent feature annotation using available structural information. In this study, SSMap – a new UniProt-PDB residue-residue level mapping – was generated. The primary objective of this mapping is not only to facilitate the two tasks mentioned above, but also to palliate a number of shortcomings of existent mappings. SSMap is the first isoform sequence-specific mapping resource and is up-to-date for UniProtKB annotation tasks. The method employed by SSMap differs from the other mapping resources in that it stresses on the correct reconstruction of the PDB sequence from structures, and on the correct attribution of a UniProtKB entry to each PDB chain by using a series of post-processing steps.</p> <p>Results</p> <p>SSMap was compared to other existing mapping resources in terms of the correctness of the attribution of PDB chains to UniProtKB entries, and of the quality of the pairwise alignments supporting the residue-residue mapping. It was found that SSMap shared about 80% of the mappings with other mapping sources. New and alternative mappings proposed by SSMap were mostly good as assessed by manual verification of data subsets. As for local pairwise alignments, it was shown that major discrepancies (both in terms of alignment lengths and boundaries), when present, were often due to differences in methodologies used for the mappings.</p> <p>Conclusion</p> <p>SSMap provides an independent, good quality UniProt-PDB mapping. The systematic comparison conducted in this study allows the further identification of general problems in UniProt-PDB mappings so that both the coverage and the quality of the mappings can be systematically improved for the benefit of the scientific community. SSMap mapping is currently used to provide PDB cross-references in UniProtKB.</p

    An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy

    Get PDF
    The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6–83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses

    An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy.

    Get PDF
    The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses

    Anti-ErbB-2 monoclonal antibodies and ErbB-2-directed vaccines

    No full text
    The tumour antigen ErbB-2 belongs to the epidermal growth factor receptor family. Numerous studies have shown that ErbB-2 is overexpressed in many cancers and it is prognostically important in a subset of malignancies. It is well recognised that this receptor has many characteristics that make it an excellent target for tumour-specific immunotherapy. One anti-ErbB-2 monoclonal antibody, Herceptin or TrastuzuMab, has already shown clinical efficacy for the treatment of metastatic breast cancer. However, despite this success, it is still currently unclear how monoclonal antibodies inhibit tumour growth in vivo. This review will summarise the biological activities of a range of anti-ErbB-2 Mabs, as well as their possible mechanisms of action. In addition, as an active mode of immunotherapy, the current vaccine strategies for inducing or enhancing ErbB-2-specific immunity will also be discussed. It is anticipated that a better understanding of the activities of anti-ErbB-2 Mabs will aid in the development of both passive and active immunotherapies against this important receptor

    Anti-ErbB-2 monoclonal antibodies and ErbB-2-directed vaccines

    No full text

    Mapping protein information to disease terminologies

    No full text
    In order to improve the accessibility of genomic and proteomic information to medical researchers, we have developed a procedure to link biological information on proteins involved in diseases to the MeSH and ICD-10 disease terminologies. For this purpose, we took advantage of the manually curated disease annotations in more than 2,000 human protein entries of the UniProt KnowledgeBase. We mapped disease names extracted from the entry comment lines or from the corresponding OMIM entry to the MeSH. The method was assessed on a benchmark set of 200 manually mapped disease comment lines. We obtained a recall of 54% for 91% precision. The same procedure was used to map the more than 3,000 diseases in Swiss-Prot to MeSH with comparable efficiency. Tested on ICD-10, the coverage of the mapped terms was lower, which could be explained by the coarse-grained structure of this terminology for hereditary disease description. The mapping is provided as supplementary material at http://research.isbsib.ch/unimed
    corecore