13 research outputs found

    Macrophage depletion blocks congenital SARM1-dependent neuropathy

    Get PDF
    Axon loss contributes to many common neurodegenerative disorders. In healthy axons, the axon survival factor NMNAT2 inhibits SARM1, the central executioner of programmed axon degeneration. We identified 2 rare NMNAT2 missense variants in 2 brothers afflicted with a progressive neuropathy syndrome. The polymorphisms resulted in amino acid substitutions V98M and R232Q, which reduced NMNAT2 NAD+-synthetase activity. We generated a mouse model to mirror the human syndrome and found that Nmnat2V98M/R232Q compound-heterozygous CRISPR mice survived to adulthood but developed progressive motor dysfunction, peripheral axon loss, and macrophage infiltration. These disease phenotypes were all SARM1-dependent. Remarkably, macrophage depletion therapy blocked and reversed neuropathic phenotypes in Nmnat2V98M/R232Q mice, identifying a SARM1-dependent neuroimmune mechanism as a key driver of disease pathogenesis. These findings demonstrate that SARM1 induced inflammatory neuropathy and highlight the potential of immune therapy as a treatment for this rare syndrome and other neurodegenerative conditions associated with NMNAT2 loss and SARM1 activation

    Influence of calcium nitrate and sodium nitrate on strength development and properties in quicklime(CaO)-activated Class F fly ash system

    No full text
    The single use of CaO has been regarded as relatively unsuccessful in fly ash activation when no other additives are used together, as it produces a considerably lower strength compared to other types of activators (e.g., alkaline activators). This study investigated two potential additives of nitrate compounds (i.e., Ca(NO3)2 and NaNO3) to improve the strength of a CaO-activated fly ash system. The results showed that the use of Ca(NO3)2 was greatly beneficial in the strength improvement of the binder system primarily due to the significant increase in (1) the dissolution degree of fly ash, (2) C???S???H formation, and (3) pore size refinement from early days; however, NaNO3 was much less advantageous in strength improvement, although it also aided in dissolving fly ash

    High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes

    No full text
    Dye-sensitized solar cells based on iodide/triiodide (I(-)/I(3)(-)) electrolytes are viable low-cost alternatives to conventional silicon solar cells. However, as well as providing record efficiencies of up to 12.0%, the use of I(-)/I(3)(-) in such solar cells also brings about certain limitations that stem from its corrosive nature and complex two-electron redox chemistry. Alternative redox mediators have been investigated, but these generally fall well short of matching the performance of conventional I(-)/I(3)(-) electrolytes. Here, we report energy conversion efficiencies of 7.5% (simulated sunlight, AM1.5, 1,000 W m(-2)) for dye-sensitized solar cells combining the archetypal ferrocene/ferrocenium (Fc/Fc(+)) single-electron redox couple with a novel metal-free organic donor-acceptor sensitizer (Carbz-PAHTDTT). These Fc/Fc(+)-based devices exceed the efficiency achieved for devices prepared using I(-)/I(3)(-) electrolytes under comparable conditions, revealing the great potential of ferrocene-based electrolytes in future dye-sensitized solar cells applications. This improvement results from a more favourable matching of the redox potential of the ferrocene couple with that of the new donor-acceptor sensitizer.close23021
    corecore