11 research outputs found

    Fluorescent ratiometric pH indicator SypHer2: applications in neuroscience and regenerative biology

    No full text
    AbstractBackground SypHer is a genetically encoded fluorescent pH-indicator with a ratiometric readout, suitable for measuring fast intracellular pH shifts. However, a relatively low brightness of the indicator limits its use. Methods Here we designed a new version of pH-sensor - SypHer-2, that has up to three times brighter fluorescence signal in cultured mammalian cells compared to the SypHer. Results Using the new indicator we registered activity-associated pH oscillations in neuronal cell culture. We observed prominent temporal neuronal cytoplasm acidification that occurs in parallel with calcium entry. Furthermore, we monitored pH in presynaptic and postsynaptic termini by targeting SypHer-2 directly to these compartments and revealed marked differences in pH dynamics between synaptic boutons and dendritic spines. Finally, we were able to reveal for the first time the intracellular pH drop which occurs within an extended region of the amputated tail of the Xenopus laevis tadpole before it begins to regenerate. Conclusions SypHer2 is suitable for quantitative monitoring of pH in biological systems of different scales, from small cellular subcompartments to animal tissues in vivo. General significance The new pH-sensor will help to investigate pH-dependent processes in both in vitro and in vivo studies

    Red fluorescent redox-sensitive biosensor Grx1-roCherry

    No full text
    Redox-sensitive fluorescent proteins (roFPs) are a powerful tool for imaging intracellular redox changes. The structure of these proteins contains a pair of cysteines capable of forming a disulfide upon oxidation that affects the protein conformation and spectral characteristics. To date, a palette of such biosensors covers the spectral range from blue to red. However, most of the roFPs suffer from either poor brightness or high pH-dependency, or both. Moreover, there is no roRFP with the redox potential close to that of 2GSH/GSSG redox pair. In the present work, we describe Grx1-roCherry, the first red roFP with canonical FP topology and fluorescent excitation/emission spectra of typical RFP. Grx1-roCherry, with a midpoint redox potential of − 311 mV, is characterized by high brightness and increased pH stability (pKa 6.7). We successfully used Grx1-roCherry in combination with other biosensors in a multiparameter imaging mode to demonstrate redox changes in cells under various metabolic perturbations, including hypoxia/reoxygenation. In particular, using simultaneous expression of Grx1-roCherry and its green analog in various compartments of living cells, we demonstrated that local H2O2 production leads to compartment-specific and cell-type-specific changes in the 2GSH/GSSG ratio. Finally, we demonstrate the utility of Grx1-roCherry for in vivo redox imaging. Keywords: Grx1-roCherry, 2GSH/GSSG, Redox-sensitive fluorescent protein, Biosensor, Multiparameter imagin

    In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model

    Get PDF
    Ischemic cerebral stroke is one of the leading causes of death and disability in humans. However, molecular processes underlying the development of this pathology remain poorly understood. There are major gaps in our understanding of metabolic changes that occur in the brain tissue during the early stages of ischemia and reperfusion. In particular, it is generally accepted that both ischemia (I) and reperfusion (R) generate reactive oxygen species (ROS) that cause oxidative stress which is one of the main drivers of the pathology, although ROS generation during I/R was never demonstrated in vivo due to the lack of suitable methods. In the present study, we record for the first time the dynamics of intracellular pH and H2O2 during I/R in cultured neurons and during experimental stroke in rats using the latest generation of genetically encoded biosensors SypHer3s and HyPer7. We detect a buildup of powerful acidosis in the brain tissue that overlaps with the ischemic core from the first seconds of pathogenesis. At the same time, no significant H2O2 generation was found in the acute phase of ischemia/reperfusion. HyPer7 oxidation in the brain was detected only 24 h later. Comparison of in vivo experiments with studies on cultured neurons under I/R demonstrates that the dynamics of metabolic processes in these models significantly differ, suggesting that a cell culture is a poor predictor of metabolic events in vivo

    Slowly Reducible Genetically Encoded Green Fluorescent Indicator for In Vivo and Ex Vivo Visualization of Hydrogen Peroxide

    No full text
    Hydrogen peroxide (H2O2) plays an important role in modulating cell signaling and homeostasis in live organisms. The HyPer family of genetically encoded indicators allows the visualization of H2O2 dynamics in live cells within a limited field of view. The visualization of H2O2 within a whole organism with a single cell resolution would benefit from a slowly reducible fluorescent indicator that integrates the H2O2 concentration over desired time scales. This would enable post hoc optical readouts in chemically fixed samples. Herein, we report the development and characterization of NeonOxIrr, a genetically encoded green fluorescent indicator, which rapidly increases fluorescence brightness upon reaction with H2O2, but has a low reduction rate. NeonOxIrr is composed of circularly permutated mNeonGreen fluorescent protein fused to the truncated OxyR transcription factor isolated from E. coli. When compared in vitro to a standard in the field, HyPer3 indicator, NeonOxIrr showed 5.9-fold higher brightness, 15-fold faster oxidation rate, 5.9-fold faster chromophore maturation, similar intensiometric contrast (2.8-fold), 2-fold lower photostability, and significantly higher pH stability both in reduced (pKa of 5.9 vs. ≥7.6) and oxidized states (pKa of 5.9 vs.≥ 7.9). When expressed in the cytosol of HEK293T cells, NeonOxIrr demonstrated a 2.3-fold dynamic range in response to H2O2 and a 44 min reduction half-time, which were 1.4-fold lower and 7.6-fold longer than those for HyPer3. We also demonstrated and characterized the NeonOxIrr response to H2O2 when the sensor was targeted to the matrix and intermembrane space of the mitochondria, nucleus, cell membranes, peroxisomes, Golgi complex, and endoplasmic reticulum of HEK293T cells. NeonOxIrr could reveal endogenous reactive oxygen species (ROS) production in HeLa cells induced with staurosporine but not with thapsigargin or epidermal growth factor. In contrast to HyPer3, NeonOxIrr could visualize optogenetically produced ROS in HEK293T cells. In neuronal cultures, NeonOxIrr preserved its high 3.2-fold dynamic range to H2O2 and slow 198 min reduction half-time. We also demonstrated in HeLa cells that NeonOxIrr preserves a 1.7-fold ex vivo dynamic range to H2O2 upon alkylation with N-ethylmaleimide followed by paraformaldehyde fixation. The same alkylation-fixation procedure in the presence of NP-40 detergent allowed ex vivo detection of H2O2 with 1.5-fold contrast in neuronal cultures and in the cortex of the mouse brain. The slowly reducible H2O2 indicator NeonOxIrr can be used for both the in vivo and ex vivo visualization of ROS. Expanding the family of fixable indicators may be a promising strategy to visualize biological processes at a single cell resolution within an entire organism

    HyPer-3: A Genetically Encoded H(2)O(2) Probe with Improved Performance for Ratiometric and Fluorescence Lifetime Imaging.

    No full text
    High-performance sensors for reactive oxygen species are instrumental to monitor dynamic events in cells and organisms. Here, we present HyPer-3, a genetically encoded fluorescent indicator for intracellular H(2)O(2) exhibiting improved performance with respect to response time and speed. HyPer-3 has an expanded dynamic range compared to HyPer and significantly faster oxidation/reduction dynamics compared to HyPer-2. We demonstrate this performance by in vivo imaging of tissue-scale H(2)O(2) gradients in zebrafish larvae. Moreover, HyPer-3 was successfully employed for single-wavelength fluorescent lifetime imaging of H(2)O(2) levels both in vitro and in vivo
    corecore