45 research outputs found
The Relationship Between Corporate Social Responsibility and Corporate Financial Performance in Extractive Industry of China
With the rapid development of the global economy today, more and more environmental and social issues have emerged. Since China's reform and opening up, the rapid economic development has also triggered a series of social problems and conflicts, such as environmental pollution, safety accidents, and labor disputes. These problems will not only affect the sustainable development and normal operation of enterprises, but also threaten the stability and development of society. The issue of corporate social responsibility (CSR) has become a common concern of the government, enterprises, academia, and even the entirety of society.
As a pillar industry of the Chinese economy, the extractive industry provides abundant raw materials for a number of industries and plays an important role in promoting the economic development. However, the extractive industry is also a high-risk and high-polluting industry. It is prone to dangers during the production process, leading to huge economic losses, casualties and environmental pollution. Therefore, it is necessary to attach great importance to the CSR of the extractive industry.
This dissertation firstly introduces the relevant theories and literatures of CSR and financial performance. Secondly, the CSR and financial performance evaluation system of China's extractive industry are built based on stakeholder theory. Thirdly, the data of 68 listed companies in the extractive industry in China is selected as sample and quantitative research methods are used to analyze the relationship between the CSR and financial performance of extractive companies and analyze the research results and make relevant recommendations.
The research results show that in China's extractive industry, the fulfillment of CSR has a promotion effect on financial performance, but the correlation coefficient is low, and the impact is limited. But this is due to the entire environment of the China’s extractive industry to fulfill the CSR is still in the developing stage. Only the firms in the industry proactively assume the CSR and government also give support to them, can the entire environment be better.
Key words: Corporate Social Responsibility, Financial performance, Stakeholde
China CO2 emission accounts 2016–2017
Despite China’s emissions having plateaued in 2013, it is still the world’s leading energy consumer and CO2 emitter, accounting for approximately 30% of global emissions. Detailed CO2 emission inventories by energy and sector have great significance to China’s carbon policies as well as to achieving global climate change mitigation targets. This study constructs the most up-to-date CO2 emission inventories for China and its 30 provinces, as well as their energy inventories for the years 2016 and 2017. The newly compiled inventories provide key updates and supplements to our previous emission dataset for 1997–2015. Emissions are calculated based on IPCC (Intergovernmental Panel on Climate Change) administrative territorial scope that covers all anthropogenic emissions generated within an administrative boundary due to energy consumption (i.e. energy-related emissions from 17 fossil fuel types) and industrial production (i.e. process-related emissions from cement production). The inventories are constructed for 47 economic sectors consistent with the national economic accounting system. The data can be used as inputs to climate and integrated assessment models and for analysis of emission patterns of China and its regions
Assessment to China's Recent Emission Pattern Shifts
Abstract Energy and emission data are crucial to climate change research and mitigation efforts. The accuracy of energy statistics is essential for mitigation strategies and evaluating the performance of low carbon energy transition efforts. This study provides the most up‐to‐date emission inventories for China and its provinces for 2018 and 2019. We also update the carbon dioxide (CO2) emission inventories of China and 30 provinces since 2012 based on the newly revised energy statistics. The inventories are compiled in a combined accounting approach of scope 1 (Intergovernmental Panel on Climate Change territorial emissions from 17 types of fossil fuel combustion and cement production by 47 socioeconomic sectors) and scope 2 (emissions from purchased electricity and heat consumption). The most recent energy revision led to an increase in reported national CO2 emissions by an average of 0.3% from 2014 to 2017. The results show that data revisions raised China's carbon intensity mitigation baseline (in 2005) by 5.1%–10.8% and thus made it more challenging to fulfill the mitigation pledges. However, the 2020 carbon intensity mitigation target was achieved ahead of schedule in 2018. A preliminary estimate of China's national emissions for 2020 shows that the COVID‐19 pandemic and lockdown was not able to offset China's annual increase in CO2 emissions. These emissions inventories provide an improved evidence base for China's policies toward net‐zero emissions
The governance-production nexus of eco-efficiency in Chinese resource-based cities:A two-stage network DEA approach
For decades, resource-based cities in China have significantly contributed to China's socio-economic development. The heavy resource dependence of resource-based cities inevitably leads to a series of environmental problems. Mitigating environmental impacts in an unthinking manner might be disruptive for economic development. Improving eco-efficiency has been a crucial solution for protecting the environment while mitigating its negative economic impact. However, the method commonly used to evaluate the eco-efficiency – that is, the black-box data envelopment analysis (DEA) – cannot examine the inefficiencies of the internal structure, and as a result, the underlying management defects are unclear. To open the black box, this study presents a two-stage network DEA framework incorporating government and industrial sectors and measures the eco-efficiency of 84 resource-based cities during the post-financial crisis period (2007–2015). The results indicate that the average eco-efficiency of China's resource-based cities shows a promising increase, and there is a positive relationship between governance efficiency and production efficiency. The decreasing trend of governance efficiency in the Central, Western, and Northeast regions after 2014 shows the low quality of the government sector in the usage of fiscal income. Proactive disclosure of how the government sector conducts public business and spends taxpayers' money should be made to increase transparency, attract more entrepreneurial resources to carry out production activities, and further improve sustainability. The two-stage network DEA framework helps obtain more insights into the internal management defects of the government and industrial sectors and enhance their cooperation to improve the eco-efficiency precisely
Emission accounting and drivers in East African countries
East Africa is typical of the less developed economies that have emerged since the 21st century, whose brilliant economic miracle has also triggered the rapid growth of energy consumption and carbon dioxide emissions. However, previous carbon accounting studies have never focused on the region. Based on multi-source data, this paper rebuilt the 45-sectors carbon emission inventories of eight East African countries from 2000 to 2017, and used index decomposition analysis to quantify the drivers of growth. Here we found that overall the CO2 emissions show a 'two-stage exponential growth' pattern, with significant heterogeneity between countries. In terms of the energy mix, technical progress in hydro and geothermal energy was almost offset by a growing appetite for oil and coal, making it the weak and valuable factor driving emissions reduction (−1.4Mt). But it was far from enough to overcome the pressure of economic and population growth, which brought about a 13Mt and 11Mt emission growth respectively from 2000 to 2017. Increasing energy intensity due to industrialization and transport development also contributed to an increment of 6.4Mt. Low-carbon policies should be tailored to local conditions and targeted at the improvement of energy efficiency and use of renewable energy so as to achieve a win-win situation between sustainable economic growth and emission reduction
PO-271 Effects of accumulated exercise with different intensities on insulin resistance in mice
Objective The aim of this study was to investigate the effect of 8-week moderate-intensity and high-intensity accumulated exercise on insulin resistance in mice, compared with the moderate intensity continuous exercise with equal workload, which will provide an experimental reference for seeking a more reasonable and effective exercise program to break sedentary behavior and improve metabolic diseases such as IR.
Methods Eighty 4-week-old C57BL/6J mice were randomly divided into normal diet group (group C) and high-fat diet group (group H), fed with different diet. At the 10th weekend, insulin resistance model was judged by OGTT curve (AUC) and fasting blood glucose. All mice with insulin resistance were randomly divided into four groups: IR control group (IC), IR moderate-intensity continuous exercise group (IE), IR moderate-intensity accumulated exercise group (IM), IR high-intensity accumulated exercise group (IH), retained normal diet control group (C), with 12 mice for each group. All groups were fed with normal feed. The three exercise-related group performed an 8-week’s treadmill exercise program with equal workload (involve preparation and relaxation activities,0°platform slope, 5 days/week). For IE group, mice run 50min continuously with the velocity of 11m/min. For IM group,mice exercised 12.5 min per session, total 4 sessions per day, with 3-hour’s interval and the velocity of 11m/min. The IH group performed an alike exercise program with IM group, except the running speed (19m/min) and exercise time (7.5min). On the 8th weekend of exercise, FBG, OCTT, FINS, HOME- IR, and ISI were tested for each groups.
Results 1. Compared with group C, body weight, FBG and OGTT-AUC were significantly increased in group H (P<0.05 or P<0.01). 76% mice were induced to insulin resistance successfully. 2. Before and after exercise intervention of 8 weeks, there were no significant changes in body weight and OGTT-AUC, while the FBG was significantly increased in IC group (P<0.05). Body weight, FBG, and OGTT-AUC significantly decreased in IE group, IM group and IH group (P<0.05 or P<0.01). 3. After 8 weeks of exercise intervention, the FBG in the IE group, IM group, and IH group were significantly lower than that in C group (P<0.05 or P<0.01). Compared with the IC group, the FBG, FINS, OGTT-AUC, and HOME-IR in IM group, IH group and IE group were lower than those in the IC group (P<0.05 or P<0.01). Compared with the IE group, the body weight and HOME-IR index of IH group were significantly lower than those in IE group (P<0.01). Compared with IH group, the HOME-IR in IH group was lower than that in IM group (P<0.05); There was no significant difference between IM group and IE group.
Conclusions 1. Chronic moderate-intensity continuous exercise, moderate-intensity accumulated exercise, and high-intensity accumulated exercise all can effectively improve the glucose metabolism and insulin resistance in IR mice. 2.Compared with moderate-intensity accumulated exercise and moderate-intensity continuous exercise, the high-intensity accumulated exercise with equal workload is more effective in reducing the body weight and improving insulin resistance in IR mice.
 
QSYQ Attenuates Oxidative Stress and Apoptosis Induced Heart Remodeling Rats through Different Subtypes of NADPH-Oxidase
We aim to investigate the therapeutic effects of QSYQ, a drug of heart failure (HF) in clinical practice in China, on a rat heart failure (HF) model. 3 groups were divided: HF model group (LAD ligation), QSYQ group (LAD ligation and treated with QSYQ), and sham-operated group. After 4 weeks, rats were sacrificed for cardiac injury measurements. Rats with HF showed obvious histological changes including necrosis and inflammation foci, elevated ventricular remodeling markers levels(matrix metalloproteinases-2, MMP-2), deregulated ejection fraction (EF) value, increased formation of oxidative stress (Malondialdehyde, MDA), and up-regulated levels of apoptotic cells (caspase-3, p53 and tunnel) in myocardial tissue. Treatment of QSYQ improved cardiac remodeling through counter-acting those events. The improvement of QSYQ was accompanied with a restoration of NADPH oxidase 4 (NOX4) and NADPH oxidase 2 (NOX2) pathways in different patterns. Administration of QSYQ could attenuate LAD-induced HF, and AngII-NOX2-ROS-MMPs pathway seemed to be the critical potential targets for QSYQ to reduce the remodeling. Moreover, NOX4 was another key targets to inhibit the p53 and Caspase3, thus to reduce the hypertrophy and apoptosis, and eventually provide a synergetic cardiac protective effect
Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration
Recently, the economy has grown rapidly in China’s Central Plains urban agglomeration, with high energy consumption and a huge pressure on reducing CO2 emissions. Thus, low-carbon development is an important measure to solve economic, energy and environmental problems. To analyse low-emission development, this paper clarifies the evolutionary characteristics of CO2 emissions and the decoupling relationship between GDP and CO2 emissions based on the latest available data from 2000 to 2015. The results indicate that CO2 emissions of Pingdingshan and Changzhi are higher in the same year. The ratios from coal consumption accounting for the total CO2 emissions are clearly bigger than from other energy types and industrial processes. Changzhi, Luoyang and Pingdingshan have reached their peaks. Five cities have experienced strong decoupling after 2010, 13 cities present weak decoupling, 4 cities present growth connection, and 7 cities show growth negative decoupling. It can be concluded that a relatively smaller proportion of industry and strict policy implementations of coal reduction are the main factors in inhibiting the decoupling. So the proportion of coal purification should be increased firstly. Then, the energy consumption structure should be changed from the traditional coal consumption structure to coal, oil and gas. Lastly, economic means can be used to control CO2 emissions
Seizing the window of opportunity to mitigate the impact of climate change on the health of Chinese residents
The health threats posed by climate change in China are increasing rapidly. Each province faces different health risks. Without a timely and adequate response, climate change will impact lives and livelihoods at an accelerated rate and even prevent the achievement of the Healthy and Beautiful China initiatives. The 2021 China Report of the Lancet Countdown on Health and Climate Change is the first annual update of China’s Report of the Lancet Countdown. It comprehensively assesses the impact of climate change on the health of Chinese households and the measures China has taken. Invited by the Lancet committee, Tsinghua University led the writing of the report and cooperated with 25 relevant institutions in and outside of China. The report includes 25 indicators within five major areas (climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement) and a policy brief. This 2021 China policy brief contains the most urgent and relevant indicators focusing on provincial data: The increasing health risks of climate change in China; mixed progress in responding to climate change. In 2020, the heatwave exposures per person in China increased by 4.51 d compared with the 1986–2005 average, resulting in an estimated 92% increase in heatwave-related deaths. The resulting economic cost of the estimated 14500 heatwave-related deaths in 2020 is US$176 million. Increased temperatures also caused a potential 31.5 billion h in lost work time in 2020, which is equivalent to 1.3% of the work hours of the total national workforce, with resulting economic losses estimated at 1.4% of China’s annual gross domestic product. For adaptation efforts, there has been steady progress in local adaptation planning and assessment in 2020, urban green space growth in 2020, and health emergency management in 2019. 12 of 30 provinces reported that they have completed, or were developing, provincial health adaptation plans. Urban green space, which is an important heat adaptation measure, has increased in 18 of 31 provinces in the past decade, and the capacity of China’s health emergency management increased in almost all provinces from 2018 to 2019. As a result of China’s persistent efforts to clean its energy structure and control air pollution, the premature deaths due to exposure to ambient particulate matter of 2.5 μm or less (PM2.5) and the resulting costs continue to decline. However, 98% of China’s cities still have annual average PM2.5 concentrations that are more than the WHO guideline standard of 10 μg/m3. It provides policymakers and the public with up-to-date information on China’s response to climate change and improvements in health outcomes and makes the following policy recommendations. (1) Promote systematic thinking in the related departments and strengthen multi-departmental cooperation. Sectors related to climate and development in China should incorporate health perspectives into their policymaking and actions, demonstrating WHO’s and President Xi Jinping’s so-called health-in-all-policies principle. (2) Include clear goals and timelines for climate-related health impact assessments and health adaptation plans at both the national and the regional levels in the National Climate Change Adaptation Strategy for 2035. (3) Strengthen China’s climate mitigation actions and ensure that health is included in China’s pathway to carbon neutrality. By promoting investments in zero-carbon technologies and reducing fossil fuel subsidies, the current rebounding trend in carbon emissions will be reversed and lead to a healthy, low-carbon future. (4) Increase awareness of the linkages between climate change and health at all levels. Health professionals, the academic community, and traditional and new media should raise the awareness of the public and policymakers on the important linkages between climate change and health.</p