312 research outputs found
Quadruple 9-mer-based protein binding microarray with DsRed fusion protein
<p>Abstract</p> <p>Background</p> <p>The interaction between a transcription factor and DNA motif (<it>cis</it>-acting element) is an important regulatory step in gene regulation. Comprehensive genome-wide methods have been developed to characterize protein-DNA interactions. Recently, the universal protein binding microarray (PBM) was introduced to determine if a DNA motif interacts with proteins in a genome-wide manner.</p> <p>Results</p> <p>We facilitated the PBM technology using a DsRed fluorescent protein and a concatenated sequence of oligonucleotides. The PBM was designed in such a way that target probes were synthesized as quadruples of all possible 9-mer combinations, permitting unequivocal interpretation of the <it>cis</it>-acting elements. The complimentary DNA strands of the features were synthesized with a primer and DNA polymerase on microarray slides. Proteins were labeled via N-terminal fusion with DsRed fluorescent protein, which circumvents the need for a multi-step incubation. The PBM presented herein confirmed the well-known DNA binding sequences of Cbf1 and CBF1/DREB1B, and it was also applied to elucidate the unidentified <it>cis</it>-acting element of the OsNAC6 rice transcription factor.</p> <p>Conclusion</p> <p>Our method demonstrated PBM can be conveniently performed by adopting: (1) quadruple 9-mers may increase protein-DNA binding interactions in the microarray, and (2) a one-step incubation shortens the wash and hybridization steps. This technology will facilitate greater understanding of genome-wide interactions between proteins and DNA.</p
Recommended from our members
The Development of Web3D-based Open-pit Mine Monitoring System
Large-scale open-pit mines are critical infrastructure for acquiring natural resources. However, this type of mine can experience environmental and safety problems during operations and thus requires continuous monitoring. In this study, a web three-dimensional(3D)-based monitoring system is constructed using geospatial information open platform and open-source geospatial information software which targets open-pit mines in Gangwon-do, Korea. The purpose is to develop a monitoring system of open-pit mines that enables any person to monitor the topographic and environmental changes caused by mine operations and to develop and restore the area’s ecology. Open-pit mines were classified into active or inactive mines and monitoring items and methodologies were established for each type of mine. Cesium which is a WebGL-based open-source platform was chosen as it supports dynamic data visualization and hardware-accelerated graphics related to elapsed time which is the essential factor in the monitoring. The open-pit mine monitoring system was developed based on the geospatial database which contains information required for mine monitoring as time elapses, and by developing the open-source-based system software. The geospatial information database for monitoring consists of digital imagery and terrain data and also includes vector data and the restoration plan datas. The basic geospatial information used in the monitoring includes high resolution ortho image(GSD 0.5 m or above) for all areas of the mines. This is acquired by periodically using an airborne laser scanning system and a LiDAR DEM (grid size 1m × 1 m). In addition, geospatial information data were acquired by using an UAV and terrestrial LiDAR for small-scale areas; these tools are frequently used for rapid and irregular data acquisition. The geospatial information acquired for the monitoring of the open-pit mines represents various spatial resolutions and different terrain data. The database was constructed by converging this geospatial information with the Cesium-based geospatial information open platform of the ESRI World Imagery map and with SDK World Terrain meshes. The problems that resulted from the process of fusing aerial imagery and terrain data were solved in the Cesium-based open source environment. The prototype menu for the monitoring system was designed according to the monitoring item which was determined by the type of mine. The scene of the mine and changes in terrain were controlled and analyzed using the raster function of PostGIS according to the elapsed time. Using the GeoServer, the aerial imagery, terrain and restoration information for each period were serviced using the web standard interface, and the monitoring system was completed by visualizing these elements in Cesium in 3D format according to the elapsed time. This study has established a monitoring methodology for open-pit mines according to the type of mine and proposes a method for upgrading the imagery and terrain data required for monitoring. The study also showed the possibility of developing a Web3D-based open-pit mine monitoring system that is applicable to a wide range of mashup service developments
Liquid crystal display using combined fringe and in-plane electric fields
A high performance liquid crystal display using combined fringe and in-plane horizontal electric fields is proposed. The strong electric fields cause more liquid crystals to reorient almost in plane above and between the pixel electrodes. As a result, the operation voltage is lower and transmittance is higher than those of fringe field switching and in-plane switching modes, while preserving a wide viewing angle. Such a high performance device is particularly attractive for large panel liquid crystal displays
Potential impact of vegetation feedback on European heat waves in a 2 x CO 2 climate: Vegetation impact on European heat waves
Inclusion of the effects of vegetation feedback in a global climate change simulation suggests that the vegetation–climate feedback works to alleviate partially the summer surface warming and the associated heat waves over Europe induced by the increase in atmospheric CO2 concentrations. The projected warming of 4°C over most of Europe with static vegetation has been reduced by 1°C as the dynamic vegetation feedback effects are included.. Examination of the simulated surface energy fluxes suggests that additional greening in the presence of vegetation feedback effects enhances evapotranspiration and precipitation, thereby limiting the warming, particularly in the daily maximum temperature. The greening also tends to reduce the frequency and duration of heat waves. Results in this study strongly suggest that the inclusion of vegetation feedback within climate models is a crucial factor for improving the projection of warm season temperatures and heat waves over Europe
MNHT 2008-52096 SESSILE DROP EVAPORATION ON SURFACES OF VARIOUS WETTABILITY
ABSTRACT This work experimentally investigates the evaporation rates of water drops on surfaces of various wettability. By measuring the temporal evolutions of the drop radius and contact angle, we find the qualitative difference between the evaporation behavior on hydrophilic surfaces where the contact radius remains constant initially and that on the superhydrophobic surfaces where the contact angle remains constant. Also, the evaporation rate is observed to depend on the surface material although the currently available models assume that the rate is solely determined by the drop geometry. Although the theory to explain this dependence on the surface remains to be pursued by the future work, we give the empirical relations that can be used to predict the drop volume evolution for each surface
Rescue Treatment with Intra-arterial Tirofiban Infusion and Emergent Carotid Stenting
Rapid arterial rethrombosis is associated with high-grade residual stenosis and usually occurs at the site of the initial occlusion, resulting in reocclusion of the recanalized artery. Platelets may play an active role in such rethrombosis after thrombolytic-induced clot lysis. Given that glycoprotein IIb/IIIa receptor blockers, like tirofiban, prevent thrombus formation by inhibiting the final common pathway of platelet aggregation, they may be helpful for treating rethrombosis after thrombolysis. A 64-year-old man presented with an acute ischemic stroke due to internal carotid artery (ICA) occlusion. The ICA was recanalized by intravenous thrombolysis but reoccluded shortly after recanalization. The reoccluded ICA was successfully recanalized using intra-arterial tirofiban. A carotid stent was subsequently inserted to relieve severe stenosis and to prevent recurrent stroke. Here, we report a case of rescue treatment of a successfully recanalized ICA by intra-arterial tirofiban. We suggest that rescue use of intra-arterial tirofiban may be effective and safe, especially in hemorrhage prone situations, due to the relatively lower dose of tirofiban compared with intravenous doses
Single quantum dot selection and tailor-made photonic device integration using nanoscale focus pinspot
Among the diverse platforms of quantum light sources, epitaxially grown
semiconductor quantum dots (QDs) are one of the most attractive workhorses for
realizing various quantum photonic technologies owing to their outstanding
brightness and scalability. There exist various material systems for these QDs
based on their appropriate emission bandwidth; however, only a few material
systems have successfully grown single or low-density QDs, which are essential
for quantum light sources. In most other material systems, it is difficult to
realize low-density QDs, and the mesa-etching process is usually undergone in
order to reduce their density. Nevertheless, the etching process irreversibly
destroys the medium near the QD, which is detrimental to in-plane device
integration. In this study, we apply a nondestructive luminescence picking
method termed as nanoscale focus pinspot (NFP) using helium ion microscopy to
reduce the luminous QD density while retaining the surrounding medium. Given
that the NFP can precisely manipulate the luminescence at nanoscale resolution,
a photonic device can be deterministically fabricated on the target QD matched
from both spatial and spectral points of view. After applying the NFP, we
extract only a single QD emission out of the high-density ensemble QD emission.
Moreover, the photonic structure of a circular Bragg reflector is
deterministically integrated with the selected QD, and the extraction
efficiency of the QD emission has been improved 27 times. Furthermore, this
technique does not destroy the medium and only controls the luminescence.
Hence, it is highly applicable to various photonic structures, including
photonic waveguides or photonic crystal cavities regardless of their materials.Comment: 16 pages, 5 figure
- …