11 research outputs found

    Cyclooxygenase-2 overexpression is common in serrated and non-serrated colorectal adenoma, but uncommon in hyperplastic polyp and sessile serrated polyp/adenoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyclooxygenase-2 (COX-2, <it>PTGS2</it>) plays an important role in colorectal carcinogenesis. COX-2 overexpression in colorectal cancer is inversely associated with microsatellite instability (MSI) and the CpG island methylator phenotype (CIMP). Evidence suggests that MSI/CIMP+ colorectal cancer may arise through the serrated tumorigenic pathway through various forms of serrated neoplasias. Therefore, we hypothesized that COX-2 may play a less important role in the serrated pathway.</p> <p>Methods</p> <p>By immunohistochemistry, we assessed COX-2 expression in 24 hyperplastic polyps, 7 sessile serrated polyp/adenomas (SSA), 5 mixed polyps with SSA and adenoma, 27 traditional serrated adenomas, 515 non-serrated adenomas (tubular adenoma, tubulovillous adenoma and villous adenoma), 33 adenomas with intramucosal carcinomas, 96 adenocarcinomas with serration (corkscrew gland) and 111 adenocarcinomas without serration.</p> <p>Results</p> <p>Strong (2+) COX-2 overexpression was more common in non-serrated adenomas (28% = 143/515) than in hyperplastic polyps (4.2% = 1/24, p = 0.008) and serrated polyps (7 SSAs and 5 mixed polyps) (0% = 0/12, p = 0.04). Furthermore, any (1+/2+) COX-2 overexpression was more frequent in non-serrated adenomas (60% = 307/515) than in hyperplastic polyps (13% = 3/24, p < 0.0001) and serrated polyps (SSAs and mixed polyps) (25% = 3/12, p = 0.03). Traditional serrated adenomas and non-serrated adenomas showed similar frequencies of COX-2 overexpression. Regardless of serration, COX-2 overexpression was frequent (~85%) in colorectal adenocarcinomas. Tumor location was not significantly correlated with COX-2 overexpression, although there was a trend towards higher frequencies of COX-2 overexpression in distal tumors (than proximal tumors) among hyperplastic polyps, SSAs, mixed polyps, traditional serrated adenomas and adenocarcinomas.</p> <p>Conclusion</p> <p>COX-2 overexpression is infrequent in hyperplastic polyp, SSA and mixed polyp with SSA and adenoma, compared to non-serrated and serrated adenoma. COX-2 overexpression becomes more frequent as tumors progress to higher grade neoplasias. Our observations suggest that COX-2 may play a less significant role in the serrated pathway of tumorigenesis; however, COX-2 may still play a role in later stage of the serrated pathway.</p

    IGFBP3 Promoter Methylation in Colorectal Cancer: Relationship with Microsatellite Instability, CpG Island Methylator Phenotype, and p531

    Get PDF
    Insulin-like growth factor binding protein 3 (IGFBP3), which is induced by wild-type p53, regulates IGF and interacts with the TGF-β pathway. IGFBP3 promoter methylation may occur in colorectal cancer with or without the CpG island methylator phenotype (CIMP), which is associated with microsatellite instability (MSI) and TGFBR2 mutation. We examined the relationship between IGFBP3 methylation, p53 expression, CIMP and MSI in 902 population-based colorectal cancers. Utilizing real-time PCR (MethyLight), we quantified promoter methylation in IGFBP3 and eight other CIMP-high-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1). IGFBP3 methylation was far more frequent in non-MSI-high CIMP-high tumors (85% = 35/41) than in MSI-high CIMP-high (49% = 44/90, P < .0001), MSI-high non-CIMP-high (17% = 6/36, P < .0001), and non-MSI-high non-CIMP-high tumors (22% = 152/680, P < .0001). Among CIMP-high tumors, the inverse relationship between MSI and IGFBP3 methylation persisted in p53-negative tumors (P < .0001), but not in p53-positive tumors. IGFBP3 methylation was associated inversely with TGFBR2 mutation in MSI-high non-CIMP-high tumors (P = .02). In conclusion, IGFBP3 methylation is inversely associated with MSI in CIMP-high colorectal cancers, and this relationship is limited to p53-negative tumors. Our data suggest complex relationship between global genomic/epigenomic phenomena (such as MSI/CIMP), single molecular events (e.g., IGFBP3 methylation, TP53 mutation, and TGFBR2 mutation), and the related pathways

    Correlation of β-Catenin Localization with Cyclooxygenase-2 Expression and CpG Island Methylator Phenotype (CIMP) in Colorectal Cancer1

    Get PDF
    The WNT/β-catenin (CTNNB1) pathway is commonly activated in the carcinogenic process. Cross-talks between the WNT and cyclooxygenase-2 (COX-2 or PTGS2)/prostaglandin pathways have been suggested. The relationship between β-catenin activation and microsatellite instability (MSI) in colorectal cancer has been controversial. The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, which is associated with MSI-high. However, no study has examined the relationship between β-catenin activation and CIMP status. Using 832 population-based colorectal cancer specimens, we assessed β-catenin localization by immunohistochemistry. We quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A(p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight). MSI-high, CIMP-high, and BRAF mutation were associated inversely with cytoplasmic and nuclear β-catenin expressions (i.e., β-catenin activation) and associated positively with membrane expression. The inverse relation between β-catenin activation and CIMP was independent of MSI. COX-2 overexpression correlated with cytoplasmic β-catenin expression (even after tumors were stratified by CIMP status), but did not correlate significantly with nuclear or membrane expression. In conclusion, β-catenin activation is inversely associated with CIMP-high independent of MSI status. Cytoplasmic β-catenin is associated with COX-2 overexpression, supporting the role of cytoplasmic β-catenin in stabilizing PTGS2 (COX-2) mRNA

    PIK3CA Mutation in Colorectal Cancer: Relationship with Genetic and Epigenetic Alterations1

    Get PDF
    Somatic PIK3CA mutations are often present in colorectal cancer. Mutant PIK3CA activates AKT signaling, which up-regulates fatty acid synthase (FASN). Microsatellite instability (MSI) and CpG island methylator phenotype (CIMP) are important molecular classifiers in colorectal cancer. However, the relationship between PIK3CA mutation, MSI and CIMP remains uncertain. Using Pyrosequencing technology, we detected PIK3CA mutations in 91 (15%) of 590 population-based colorectal cancers. To determine CIMP status, we quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight). PIK3CA mutation was significantly associated with mucinous tumors [P = .0002; odds ratio (OR) = 2.44], KRAS mutation (P < .0001; OR = 2.68), CIMP-high (P = .03; OR = 2.08), phospho-ribosomal protein S6 expression (P = .002; OR = 2.19), and FASN expression (P = .02; OR = 1.85) and inversely with p53 expression (P = .01; OR = 0.54) and β-catenin (CTNNB1) alteration (P = .004; OR = 0.43). In addition, PIK3CA G-to-A mutations were associated with MGMT loss (P = .001; OR = 3.24) but not with MGMT promoter methylation. In conclusion, PIK3CA mutation is significantly associated with other key molecular events in colorectal cancer, and MGMT loss likely contributes to the development of PIK3CA G>A mutation. In addition, Pyrosequencing is useful in detecting PIK3CA mutation in archival paraffin tumor tissue. PIK3CA mutational data further emphasize heterogeneity of colorectal cancer at the molecular level

    Frequency of strong (2+) COX-2 overexpression in various colorectal neoplasias

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Cyclooxygenase-2 overexpression is common in serrated and non-serrated colorectal adenoma, but uncommon in hyperplastic polyp and sessile serrated polyp/adenoma"</p><p>http://www.biomedcentral.com/1471-2407/8/33</p><p>BMC Cancer 2008;8():33-33.</p><p>Published online 29 Jan 2008</p><p>PMCID:PMC2257954.</p><p></p
    corecore