72 research outputs found

    Cardiorespiratory fitness and the incidence of type 2 diabetes: a cohort study of Japanese male athletes

    Get PDF
    BACKGROUND: In Japan, although the incidence of overweight (BMI ≥ 25) is still low compared with that in Europe and the United States, the prevalence of type 2 diabetes has increased over the last 15 years,. In both Japanese and Caucasian populations it has been reported that a high level of cardiorespiratory fitness protects against the development of type 2 diabetes. However, there are no reports focused specifically on athletes that investigate whether high cardiorespiratory fitness at a young age can prevent disease later in life. We examined the relationship between cardiorespiratory fitness at a young age and the development of type 2 diabetes in Japanese athletes using a cohort study. METHODS: The cardiorespiratory fitness of male alumni of the physical education department of Juntendo University, as measured by stored data of a 1,500-m endurance run in college (1971–1991) was compared with their incidence of type 2 diabetes as determined by follow-up questionnaires (2007–2009). This study used Cox’s proportional hazards models and adjusted for age, year of graduation, BMI, smoking, and sports club participation at college age. RESULTS: We collected data on cardiorespiratory fitness at college age and medical history survey data during 2007–2009 from 570 male alumni. The median follow-up period was 26 years (IQR: 23–29 years), and 22 men had developed type 2 diabetes. An inverse relationship was observed between incidence of type 2 diabetes and level of cardiorespiratory fitness at time of college after adjustment for age, year of graduation, BMI, smoking, and sports participation. The adjusted hazards ratio and 95% CI by category (low, medium, and high) were 1.00 (reference), 0.40 (0.14–1.13) and 0.26 (0.07–1.00) (p = 0.03 for trend). CONCLUSIONS: A high level of cardiorespiratory fitness at a young age can help prevent type 2 diabetes later in life

    Effects of Yellow-Tinted Lenses on Visual Attributes Related to Sports Activities and Daily Life in Late Middle-aged Adults

    Get PDF
    The purpose of this study was to clarify the effects of colored lenses on the visual performance of middle-aged people. The subjects were 19 middle-aged people with a mean age of 57.4 ±6.0 years. Five different functional lenses were used in the experiments: colorless lenses and four colored lenses (Light-yellow, Dark-yellow, Light-gray, and Dark-gray). Using each lens type, contrast sensitivity, depth perception, hand–eye coordination, dynamic visual acuity, and visual acuity/low-contrast visual acuity were measured. Visual acuity/low-contrast visual acuity was measured under the four conditions of Evening, Evening + Glare, Day, and Day + Glare. Results showed that dynamic visual acuity and depth perception did not differ among the lens types, but hand–eye coordination measurements had a significantly shorter time with the Light-yellow and Dark-yellow lenses than the Dark-gray lenses. Low-contrast visual acuity under Evening and Evening + Glare conditions tended to be lower with the Dark lenses than the Colorless and Light-yellow lenses. The subjects rated the Yellow lenses as bright in a subjective questionnaire evaluation

    Effect of imbalance in dietary macronutrients on blood hemoglobin levels: a cross-sectional study in young underweight Japanese women

    Get PDF
    BackgroundIron deficiency and underweight are common nutritional problems among young Japanese women, many of whom show unhealthy dietary patterns owing to a desire for thinness. We conducted a cross-sectional analysis of the relationship between iron status, nutritional status, and dietary intake among young Japanese women with underweight to identify dietary risk factors for iron deficiency.MethodsOf the 159 young women (18–29 years of age) enrolled, 77 underweight and 37 normal-weight women were included in the study. They were further categorized into four groups based on quartiles of hemoglobin levels among all participants. Dietary nutrient intake was ascertained using a brief self-administered diet history questionnaire. Blood level of hemoglobin and nutritional biomarkers such as total protein, albumin, insulin-like growth factor-1 (IGF-1), and essential amino acids were measured.ResultsIn underweight, the multiple comparison test showed that dietary intakes of fat, saturated fatty acid, and monosaturated fatty acid were significantly higher and carbohydrate intake was significantly lower in the group with the lowest hemoglobin level, whereas intakes of iron were the same across groups. Multivariate regression coefficients suggested that replacing fat with protein or carbohydrates increased hemoglobin levels under isocaloric conditions. Additionally, significant positive correlations were observed between hemoglobin levels and nutritional biomarkers.ConclusionDietary iron intake did not change across different hemoglobin groups among Japanese underweight women. However, our results suggested that an imbalanced dietary macronutrient induces anabolic status and hemoglobin synthesis deterioration among them. Especially, a higher fat intake may be a risk factor for lower hemoglobin

    A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators.

    Get PDF
    Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes

    A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators

    Get PDF
    Significance: Although viruses are well-characterized regulators of eukaryotic algae, little is known about those infecting unicellular predators in oceans. We report the largest marine virus genome yet discovered, found in a wild predatory choanoflagellate sorted away from other Pacific microbes and pursued using integration of cultivation-independent and laboratory methods. The giant virus encodes nearly 900 proteins, many unlike known proteins, others related to cellular metabolism and organic matter degradation, and 3 type-1 rhodopsins. The viral rhodopsin that is most abundant in ocean metagenomes, and also present in an algal virus, pumps protons when illuminated, akin to cellular rhodopsins that generate a proton-motive force. Giant viruses likely provision multiple host species with photoheterotrophic capacities, including predatory unicellular relatives of animals. Abstract: Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae. Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes

    Impaired Prefrontal Hemodynamic Maturation in Autism and Unaffected Siblings

    Get PDF
    BACKGROUND: Dysfunctions of the prefrontal cortex have been previously reported in individuals with autism spectrum disorders (ASD). Previous studies reported that first-degree relatives of individuals with ASD show atypical brain activity during tasks associated with social function. However, developmental changes in prefrontal dysfunction in ASD and genetic influences on the phenomena remain unclear. In the present study, we investigated the change in hemoglobin concentration in the prefrontal cortex as measured with near-infrared spectroscopy, in children and adults with ASD during the letter fluency test. Moreover, to clarify the genetic influences on developmental changes in the prefrontal dysfunction in ASD, unaffected siblings of the ASD participants were also assessed. METHODOLOGY/PRINCIPAL FINDINGS: Study participants included 27 individuals with high-functioning ASD, age- and IQ-matched 24 healthy non-affected siblings, and 27 unrelated healthy controls aged 5 to 39 years. The relative concentration of hemoglobin ([Hb]) in the prefrontal cortex was measured during the letter fluency task. For children, neither the [oxy-Hb] change during the task nor task performances differed significantly among three groups. For adults, the [oxy-Hb] increases during the task were significantly smaller in the bilateral prefrontal cortex in ASD than those in control subjects, although task performances were similar. In the adult siblings the [oxy-Hb] change was intermediate between those in controls and ASDs. CONCLUSION/SIGNIFICANCE: Although indirectly due to a cross-sectional design, the results of this study indicate altered age-related change of prefrontal activity during executive processing in ASD. This is a first near-infrared spectroscopy study that implies alteration in the age-related changes of prefrontal activity in ASD and genetic influences on the phenomena

    Community Analysis of Root- and Tuber-Associated Bacteria in Field-Grown Potato Plants Harboring Different Resistance Levels against Common Scab

    No full text
    Eight genotypes of potato plants with different resistance levels against common scab were grown in a field infested with Streptomyces turgidiscabies. DNA was extracted from the roots, tubers, and rhizosphere soils of each of the eight genotypes at the flowering stage, and the quantity of S. turgidiscabies genomic DNA was assessed by real-time PCR using a TaqMan probe. The results obtained showed that the different potato genotypes had significant impacts on the population levels of S. turgidiscabies between resistant and susceptible genotypes in the tubers, but not in the roots or rhizosphere soils. Clone analyses of 16S rRNA gene libraries from the eight potato genotypes identified three phyla (Proteobacteria, Firmicutes, and Actinobacteria) as dominant taxa in root and tuber clone libraries, while a clustering analysis identified 391 operational taxo-nomic units (OTUs) at the species level. Eleven OTUs closely related to Aquicella siphonis, Arthrobacter nicotinovorans, Streptomyces rishiriensis, Rhodococcus baikonurensis, Rhizobium radiobacter, Rhizobium etli, Phyllobacterium myrsinacearum, Paenibacillus pabuli, Paenibacillus alginolyticus, and Bacillus halmapalus were detected in the root or tuber libraries of all the potato genotypes examined. Furthermore, an abundance of OTUs related to Aquicella and Rhodococcus was observed in the rhizospheres of resistant and susceptible potato genotypes, respectively. Based on this ecological information, an efficient survey may be conducted for biological agents from the potato rhizosphere. Key words: 16S rRNA gene, common scab, community analysis, potato, rhizospher
    corecore