28 research outputs found

    The Relationship Between the Virtual Hand Illusion and Motor Performance

    Get PDF
    Bodily self-consciousness consists of agency (i.e., the feeling of controlling one’s actions and causing external events) and body ownership (i.e., the feeling that one’s body belongs to one’s self). If a visual presentation of a virtual (fake) hand matches the active movement of a real hand, both the agency and body ownership of the virtual hand are induced [i.e., the active virtual hand illusion (VHI)]. However, previous active VHI studies have rarely considered the effects of goal-related movement errors (i.e., motor performance) on the senses of agency and ownership. Hence, the current study aimed to clarify the relationship between the active VHI and motor performance. To induce the VHI, 18 healthy subjects (three men and 15 women; 20.7 ± 7.3 years) were required to continuously move a virtual hand around a circle at a predetermined speed (i.e., spatial and temporal goals) using their active hand movements. While moving the virtual hand actively, five visual feedback delays were introduced: 90, 210, 330, 450, and 570 ms. It was found that the subjective ratings of both the agency and body ownership of the virtual hand decreased as a function of the delay intervals, whereas most of the spatial and temporal movement errors linearly increased. Using multiple regression analyses, we examined whether the agency and ownership ratings could be explained effectively by both the delay and movement errors. The results demonstrated that the agency was determined not only by the delay but also by the movement variability, whereas the body ownership was mostly determined by the delay. These findings suggest a possibility that the goal-related motor performance of the active VHI influences the agency judgment more strongly, while its effect on the ownership judgment is weaker

    How a Lateralized Brain Supports Symmetrical Bimanual Tasks

    Get PDF
    A large repertoire of natural object manipulation tasks require precisely coupled symmetrical opposing forces by both hands on a single object. We asked how the lateralized brain handles this basic problem of spatial and temporal coordination. We show that the brain consistently appoints one of the hands as prime actor while the other assists, but the choice of acting hand is flexible. When study participants control a cursor by manipulating a tool held freely between the hands, the left hand becomes prime actor if the cursor moves directionally with the left-hand forces, whereas the right hand primarily acts if it moves with the opposing right-hand forces. In neurophysiological (electromyography, transcranial magnetic brain stimulation) and functional magnetic resonance brain imaging experiments we demonstrate that changes in hand assignment parallels a midline shift of lateralized activity in distal hand muscles, corticospinal pathways, and primary sensorimotor and cerebellar cortical areas. We conclude that the two hands can readily exchange roles as dominant actor in bimanual tasks. Spatial relationships between hand forces and goal motions determine hand assignments rather than habitual handedness. Finally, flexible role assignment of the hands is manifest at multiple levels of the motor system, from cortical regions all the way down to particular muscles

    Properties of Propriospinal Neurons in the C 3

    No full text

    Vestibular stimulation-induced facilitation of cervical premotoneuronal systems in humans.

    No full text
    It is unclear how descending inputs from the vestibular system affect the excitability of cervical interneurons in humans. To elucidate this, we investigated the effects of galvanic vestibular stimulation (GVS) on the spatial facilitation of motor-evoked potentials (MEPs) induced by combined pyramidal tract and peripheral nerve stimulation. To assess the spatial facilitation, electromyograms were recorded from the biceps brachii muscles (BB) of healthy subjects. Transcranial magnetic stimulation (TMS) over the contralateral primary motor cortex and electrical stimulation of the ipsilateral ulnar nerve at the wrist were delivered either separately or together, with interstimulus intervals of 10 ms (TMS behind). Anodal/cathodal GVS was randomly delivered with TMS and/or ulnar nerve stimulation. The combination of TMS and ulnar nerve stimulation facilitated BB MEPs significantly more than the algebraic summation of responses induced separately by TMS and ulnar nerve stimulation (i.e., spatial facilitation). MEP facilitation significantly increased when combined stimulation was delivered with GVS (p < 0.01). No significant differences were found between anodal and cathodal GVS. Furthermore, single motor unit recordings showed that the short-latency excitatory peak in peri-stimulus time histograms during combined stimulation increased significantly with GVS. The spatial facilitatory effects of combined stimulation with short interstimulus intervals (i.e., 10 ms) indicate that facilitation occurred at the premotoneuronal level in the cervical cord. The present findings therefore suggest that GVS facilitates the cervical interneuron system that integrates inputs from the pyramidal tract and peripheral nerves and excites motoneurons innervating the arm muscles
    corecore