197 research outputs found

    Burden of Cryptosporidium Infections in the Yangtze River Delta in China in the 21st Century: A One Health Perspective

    Get PDF
    Cryptosporidiosis is a leading cause of diarrheal disease in some populations, including young children and people with compromised immune systems. The epidemiology of Cryptosporidium , which is transmitted mainly through waterborne routes, has been a serious public health concern. Cryptosporidiosis is closely associated with animals and the shared environment, and is well suited to a One Health approach to prevention and control. In China, Cryptosporidium investigations in humans, various animal species, water bodies and other environments have been widely conducted, including in the Yangtze River Delta, which encompasses Shanghai, Jiangsu, Zhejiang and Anhui. With the increasing integrated development of the Yangtze River Delta, advance preparation and effective monitoring are necessary to prevent outbreaks of neglected tropical diseases, such as cryptosporidiosis, and to contribute to infectious disease prevention and control in the entire region. Moreover, the epidemiological surveillance of infectious diseases is a critical public health measure. This article reviews the burden of Cryptosporidium in the Yangtze River Delta at the human-animal-environment interface, as reported since 2001, and identifies the deficiencies and challenges in epidemiological studies of Cryptosporidium in this region from a One Health perspective, to provide basic information for the formulation of prevention and control strategies

    De novo assembly and transcriptome characterization: novel insights into the natural resistance mechanisms of Microtus fortis against Schistosoma japonicum

    Get PDF
    BACKGROUND: Microtus fortis is a non-permissive host of Schistosoma japonicum. It has natural resistance against schistosomes, although the precise resistance mechanisms remain unclear. The paucity of genetic information for M. fortis limits the use of available immunological methods. Thus, studies based on high-throughput sequencing technologies are required to obtain information about resistance mechanisms against S. japonicum. RESULTS: Using Illumina single-end technology, a de novo assembly of the M. fortis transcriptome produced 67,751 unigenes with an average length of 868 nucleotides. Comparisons were made between M. fortis before and after infection with S. japonicum using RNA-seq quantification analysis. The highest number of differentially expressed genes (DEGs) occurred two weeks after infection, and the highest number of down-regulated DEGs occurred three weeks after infection. Simultaneously, the strongest pathological changes in the liver were observed at week two. Gene ontology terms and pathways related to the DEGs revealed that up-regulated transcripts were involved in metabolism, immunity and inflammatory responses. Quantitative real-time PCR analysis showed that patterns of gene expression were consistent with RNA-seq results. CONCLUSIONS: After infection with S. japonicum, a defensive reaction in M. fortis commenced rapidly, increasing dramatically in the second week, and gradually decreasing three weeks after infection. The obtained M. fortis transcriptome and DEGs profile data demonstrated that natural and adaptive immune responses, play an important role in M. fortis immunity to S. japonicum. These findings provide a better understanding of the natural resistance mechanisms of M. fortis against schistosomes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi: 10.1186/1471-2164-15-417) contains supplementary material, which is available to authorized users

    On the cycle decomposition of the WG-NLFSR

    Get PDF
    Recently, Kalikinkar Mandal and Guang Gong presented a family of nonlinear pseudorandom number generators using Welch-Gong Transformations in their paper [6]. They also performed the cycle decomposition of the WG-NLFSR recurrence relations over different finite fields by computer simulations where the nonlinear recurrence relation is composed of a characteristic polynomial and a WG permutation. In this paper, we mainly prove that the state transition transformation of the WG-NLFSR is an even permutation. We also prove that the number of the cycles in the cycle decomposition of WG-NLFSR is even. And we apply our results to the filtering WG7-NLFSR to prove that the period of the sequences generated by WG7-NLFSR can not be maximum

    On the multipeakon dissipative behavior of the modified coupled camassa-holm model for shallow water system

    Get PDF
    Published version of an article in the journal: Mathematical Problems in Engineering. Also available from the publisher at: http://dx.doi.org/10.1155/2013/107450 Open AccessThis paper investigates the multipeakon dissipative behavior of the modified coupled two-component Camassa-Holm system arisen from shallow water waves moving. To tackle this problem, we convert the original partial differential equations into a set of new differential equations by using skillfully defined characteristic and variables. Such treatment allows for the construction of the multipeakon solutions for the system. The peakon-antipeakon collisions as well as the dissipative behavior (energy loss) after wave breaking are closely examined. The results obtained herein are deemed valuable for understanding the inherent dynamic behavior of shallow water wave breaking

    Altered Gut Microbiota Composition in Subjects Infected With Clonorchis sinensis

    Get PDF
    Clonorchiasis is an infectious disease caused by helminths of Clonorchis sinensis (C. sinensis). The adult parasite mainly inhabits the bile duct and gall bladder, and results in various complications to the hepatobiliary system. The amount of bile secreted into the intestine is reduced in cases of C. sinensis infection, which may alter the pH of the gut and decrease the amount of surfactant protein D released from the gallbladder. However, the impact of parasitic infection on the human gut microbiome remains unclear. To this end, we examined the gut microbiota composition in 47 modified Kato–Katz thick smear-positive (egg-positive) volunteers and 42 healthy controls from five rural communities. Subjects were grouped into four sub-populations based on age and infection status. High-throughput 16S rRNA gene sequencing revealed significant changes in alpha diversity between EP1 and EN1. The beta diversity showed alterations between C. sinensis-infected subjects and healthy controls. In C. sinensis infected patients, we found the significant reduction of certain taxa, such as Bacteroides and anti-inflammatory Bifidobacterium (P < 0.05). Bacteroides, a predominant gut bacteria in healthy populations, was negatively correlated with the number of C. sinensis eggs per gram (EPG, r = βˆ’0.37, P adjust < 0.01 in 20–60 years old group; r = βˆ’0.64, P adjust = 0.04 in the 60+ years old group). What’s more, the reduction in the abundance of Bifidobacterium, a common probiotic, was decreased particularly in the 60 + years old group (r = βˆ’0.50, P = 0.04). The abundance of Dorea, a potentially pro-inflammatory microbe, was higher in infected subjects than in healthy individuals (P < 0.05). Variovorax was a unique bacteria that was only detected in infected subjects. These results clearly demonstrate the significant influence of C. sinensis infection on the human gut microbiota and provided new insights into the control, prevention, diagnosis, and clinical study of clonorchiasis through the human gut microbiota

    Molecular Epidemiology and the Control and Prevention of Cystic Echinococcosis in China: What is Known from Current Research

    Get PDF
    As a zoonotic parasitic disease, echinococcosis is a severe global public health issue caused by the larvae of Echinococcus spp. Not only does echinococcosis threaten human health, but echinococcosis also causes enormous economic losses. China ranks first in the range of echinococcosis endemic areas, the number of infected patients, and the number of threatened populations worldwide, hence the most severe echinococcosis epidemic currently exists in China. Cystic echinococcosis (CE) is the most important form of echinococcosis. Accounting for nearly 80% of all echinococcosis cases, CE is the most important cause of the echinococcosis disease burden. Echinococcus granulosus sensu lato ( s.l. ) is the causative agent of CE and is considered a multi-genotype complex. The different genotypes of E. granulosus s.l. exhibit differences in morphology, transmission route, and epidemic characteristics. The corresponding clinical characteristics, clinical treatment, and vaccine responses also differ between the genotypes of E. granulosus s.l. During the past two decades, China has implemented echinococcosis control and prevention programs in endemic areas with impressive results. Specifically, the prevalence of echinococcosis has decreased. With such extraordinary achievements, precise control and prevention of the genotypes of E. granulosus s.l. have never been more important. Nevertheless, insufficient attention has been devoted to molecular epidemiology in the current control programs, and the lack of genotype data from humans and animal hosts exacerbates the situation. Hence, based on the ongoing control and surveillance programs, collecting additional molecular epidemiologic data and geographic information from humans and animals, as well as monitoring the clinical manifestations and drug and vaccine responses of the different genotypes, are invaluable for establishing a molecular epidemiologic database, which in turn can enhance the precise control and prevention of echinococcosis

    Effect of lactobacilli inoculation on protein and carbohydrate fractions, ensiling characteristics and bacterial community of alfalfa silage

    Get PDF
    IntroductionAlfalfa (Medicago sativa L.) silage is one of the major forages with high protein for ruminants.MethodsThe objective of this study was to investigate the effects of lactobacilli inoculants on protein and carbohydrate fractions, ensiling characteristics and bacterial community of alfalfa silage. Wilted alfalfa (35% dry matter) was inoculated without (control) or with Lactobacillus coryniformis, Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus pentosus and ensiled for 7, 15, and 60 days.Results and discussionSilage inoculated with L. pentosus was superior to L. coryniformis, L. casei, L. plantarum in improving the fermentation quality of alfalfa silage, as indicated by the lowest ammonia nitrogen content and silage pH during ensiling. There was minor difference in water soluble carbohydrates content among all silages, but L. pentosus inoculants was more efficient at using xylose to produce lactic acid, with lower xylose content and higher lactic acid content than the other inoculants. Compared with the control, L. pentosus inoculants did not affect true protein content of silage, but increased the proportions of buffer soluble protein and acid detergent soluble protein. The L. pentosus inoculants reduced the bacterial diversity In alfalfa silage with lower Shannon, Chao1, and Ace indices, and promoted relative abundance of lactobacillus and decreased the relative abundance of Pediococcus compared with the control. As well as L. pentosus inoculants up-regulated amino acid, carbohydrate, energy, terpenoids, and polypeptides metabolism, and promoted lactic acid fermentation process. In summary, the fermentation quality and nutrient preservation of alfalfa silage were efficiently improved by inoculated with L. pentosus

    The single-cell landscape of cystic echinococcosis in different stages provided insights into endothelial and immune cell heterogeneity

    Get PDF
    IntroductionHydatid cysts and angiogenesis are the key characteristics of cystic echinococcosis, with immune cells and endothelial cells mediating essential roles in disease progression. Recent single-cell analysis studies demonstrated immune cell infiltration after Echinococcus granulosus infection, highlighting the diagnostic and therapeutic potential of targeting certain cell types in the lesion microenvironment. However, more detailed immune mechanisms during different periods of E. granulosus infection were not elucidated.MethodsHerein, we characterized immune and endothelial cells from the liver samples of mice in different stages by single-cell RNA sequencing.ResultsWe profiled the transcriptomes of 45,199 cells from the liver samples of mice at 1, 3, and 6 months after infection (two replicates) and uninfected wild-type mice. The cells were categorized into 26 clusters with four distinct cell types: natural killer (NK)/T cells, B cells, myeloid cells, and endothelial cells. An SPP1+ macrophage subset with immunosuppressive and pro-angiogenic functions was identified in the late infection stage. Single-cell regulatory network inference and clustering (SCENIC) analysis suggested that Cebpe, Runx3, and Rora were the key regulators of the SPP1+ macrophages. Cell communication analysis revealed that the SPP1+ macrophages interacted with endothelial cells and had pro-angiogenic functions. There was an obvious communicative relationship between SPP1+ macrophages and endothelial cells via Vegfa–Vegfr1/Vegfr2, and SPP1+ macrophages interacted with other immune cells via specific ligand–receptor pairs, which might have contributed to their immunosuppressive function.DiscussionOur comprehensive exploration of the cystic echinococcosis ecosystem and the first discovery of SPP1+ macrophages with infection period specificity provide deeper insights into angiogenesis and the immune evasion mechanisms associated with later stages of infection

    Molecular Biomarkers for the Diagnosis of Primary Vitreoretinal Lymphoma

    Get PDF
    Primary vitreoretinal lymphoma (PVRL) or primary intraocular lymphoma, a subtype of primary central nervous system lymphoma, often masquerades as uveitis. The diagnosis of PVRL requires identification of lymphoma cells inside the eye, which is often challenging due to the frequent necrosis and admixing of PVRL cells with reactive lymphocytes. Therefore, detection of immunoglobulin heavy chain (IgH) and T-cell receptor (TCR) gene rearrangements provide molecular diagnosis of B- and T-cell lymphoma, respectively. We retrospectively evaluated 208 cases with a clinical diagnosis of masquerade syndrome from 1998 to 2010. In 200 cases with molecular analyses using microdissection and polymerase chain reaction, we found that 110 cases had IgH gene rearrangement, 5 cases had TCR gene rearrangement, and 85 cases were negative for these two gene arrangements. The molecular data corroborated the cytopathological diagnoses of PVRL and uveitis in the majority of cases. Cytokine above the detected levels in the specimens were also measured in 80 of the 208 cases. A ratio of vitreous IL-10 to IL-6 greater than 1, suggesting PVRL, was found in 56/80 cases; 53/56 had the correct diagnosis. A ratio less than 1, suggesting uveitis, was found in 24/80 cases; 17/24 correctly confirmed the diagnosis. Moreover, the molecular data corresponded well with the clinical course of the diseases. The sensitivity and specificity of these molecular biomarkers for the diagnosis of PVRL are higher than 95%

    Prevalence of the Cryptosporidium Pig Genotype II in Pigs from the Yangtze River Delta, China

    Get PDF
    Background: Cryptosporidium spp. is prevalent globally, pigs are an important Cryptosporidium reservoir. In China, little data regarding rates of Cryptosporidium infections in pigs are available. The present study was therefore aimed at characterizing the distribution of Cryptosporidium species in pigs from two different cities, Shaoxing and Shanghai, from the Yangtze River delta. Methodology/Principal Findings: Nested PCR to amplify the 18S rRNA locus on DNA extracted from fecal samples (n = 94) revealed the positive rate of Cryptosporidium in pigs from two cities was approximately 17.0%. The positive rates in Shanghai and Shaoxing were 14.3 % and 25.0 % respectively. Amplified sequences were verified by sequencing. The identified strain belonged to the C. pig genotype II using BLAST analysis in the NCBI database. Conclusion/Significance: Our finding of Cryptosporidium pig genotype II in pigs in the Yangtze River delta area suggests that pig farms in this region must be considered a public health threat and proper control measures be introduced
    • …
    corecore