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Abstract Recently, Kalikinkar Mandal and Guang Gong presented a family of nonlinear pseudo-

random number generators using Welch-Gong Transformations in their paper [6]. They also performed

the cycle decomposition of the WG-NLFSR recurrence relations over different finite fields by computer

simulations where the nonlinear recurrence relation is composed of a characteristic polynomial and a

WG permutation. In this paper, we mainly prove that the state transition transformation of the WG-

NLFSR is an even permutation. We also prove that the number of the cycles in the cycle decomposition

of WG-NLFSR is even. And we apply our results to the filtering WG7-NLFSR to prove that the period

of the sequences generated by WG7-NLFSR can not be maximum.
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1 Introduction

Unlike the LFSR sequences which are well studied and understood [1,2,4], the randomness

properties of a sequence generated by an arbitrary NLFSR are not known and hard to determine.

As an example, the cycle decomposition of an arbitrary NLFSR is not well understood, because

it is hard to determine the number of cycles and the lengths of the cycles in a cycle decomposition

of the NLFSR. In the theory of NLFSRs, the cycle decomposition of NLFSRs is an important

property to look at first, since each cycle can be considered as a sequence and the length of the

cycle determines the period of the sequence.

In their paper[6], Kalikinkar Mandal, and Guang Gong presented a family of pseudorandom

sequence generators, named the filtering nonlinear feedback shift registers using Welch-Gong

(WG) transformations (henceforth called filtering WG-NLFSR). They also performed the cy-

cle decomposition of WG-NLFSR recurrence relations over different finite fields by computer

simulations where the nonlinear recurrence relation is composed of a characteristic polynomial

and a WG permutation. In this paper, we would like to propose some general theories of the

cycle decomposition of NLFSR, especially for filtering WG-NLFSR. Also we would like to use

our results to analyze some related objects such as WG7-NLFSR in [6].

The article is organized as follows. In section 2, we recall the general model of the filtering

WG-NLFSR. In section 3 and 4, we give our main results. In section 5, we use our results to

analyze the filtering WG7-NLFSR. In section 6, we give the conclusion.

2 General Description of the Filtering WG-NLFSR

Keep the notations in [6]. The readers can refer to [6] for some details on the filtering WG-

NLFSR. For the WG-NLFSR, an architecture of the WG-NLFSR is shown in Figure. 1. Let
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a = {ai}i>0, ai ∈ F2t be a sequence generated by the n−stage nonlinear recurrence relation,

which is defined as

an+k = c0ak + · · ·+ cn−1an−1+k +WGP (an−1+k), ai ∈ F2t , k > 0. (1)

where WGP (x) is the WG permutation and (a0, a1, · · · , an−1) is the initial state. The filtering

WG-NLFSR sequence {bi}i>0 is defined by bi = WG(ai), where WG(x) is the WG transfor-

mation.

Figure 1: An Architecture of the WG-NLFSR

Let

T (a0, · · · , an−1) = (a1, · · · , an−1, c0a0 + · · ·+ cn−1an−1 +WGP (an−1).

Then T is a permutation from Fn2t to Fn2t when c0 6= 0. We call it the state transition transfor-

mation of the WG-NLFSR.

In [6], the authors said that it was not hard to show the period of {bi}i>0 produced by the

filtering WG-NLFSR was the same as the period of a. So analyzing the period of the sequence a

is equivalent to analyzing the period of the sequence b. Since the state transition transformation

T of the WG-NLFSR is a permutation when c0 6= 0, analyzing the cycle decomposition of the

state transition transformation T of the WG-NLFSR is equivalent to analyzing the period of

the sequence a. From now on, we suppose that c0 6= 0.

3 The parity of the state transition transformation of the WG-NLFSR

By algebra theory, we know that each permutation σ in the symmetric group Sn can be

written as a product of disjoint cycles. Suppose that σ =
n∏
i=1

i ∗ ki, here ki is the number of

the i−cycle, i represents the cycle with length i. Then
n∑
i=1

iki = n and the number of cycles

of σ is
n∑
i=1

ki. When two permutations σ =
n∏
i=1

ki and ς =
n∏
i=1

hi in the symmetric group

Sn are conjugate , i.e., there exits a permutation τ such that σ = τ−1ςτ , then their cycle

decompositions have the same type, i.e., for 1 6 i 6 n, ki = hi. A permutation is called an

even (odd) permutation if it can be written as a product of 2-cycle of even (odd)number. For

example, if i is even, then the i-cycle is an odd permutation otherwise it is an even permutation.

The product of two even or odd permutations is an even permutation. The product of an even

and an odd permutations is an odd permutation.
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In this part, we mainly prove that the state transition transformation T of the WG-NLFSR

is an even permutation. First we define some permutations of the n-dimensional vector space

Fn2t over the finite field F2t , here t > 0, n > 2 are positive integers.

Let

TL1(a0, a1, · · · , an−1) = (a0, a1, · · · , an−2, an−1 + an−2).

TWGP (a0, a1, · · · , an−1) = (a0, a1, · · · ,WGP (an−2), an−1).

TWGP−1(a0, a1, · · · , an−1) = (a0, a1, · · · ,WGP−1(an−2), an−1).

It is obvious that T−1WGP = TWGP−1 .

Let TL2(a0, a1, · · · , an−1) = (a1, a2, · · · , an−1, c0a0 + c1a1 + · · ·+ cn−1an−1). Since c0 6= 0,

TL2 is a permutation on Fn2t . Now we can write T as the composition of the permutations

defined above.

Lemma 1. The state transition transformation T of the WG-NLFSR is the composition of

T−1WGP , TL1 , TWGP and TL2 , i.e., T = T−1WGP ◦TL1 ◦TWGP ◦TL2 , where ◦ denotes the composition

of maps.

Proof. T−1WGP ◦ TL1
◦ TWGP ◦ TL2

(a0, a1, · · · , an−1)

= T−1WGP ◦ TL1 ◦ TWGP (a1, a2, · · · , an−1, c0a0 + c1a1 + · · ·+ cn−1an−1)

= T−1WGP ◦ TL1
(a1, a2, · · · ,WGP (an−1), c0a0 + c1a1 + · · ·+ cn−1an−1)

= T−1WGP (a1, a2, · · · ,WGP (an−1), c0a0 + c1a1 + · · ·+ cn−1an−1 +WGP (an−1))

= (a1, a2, · · · , an−1, c0a0 + c1a1 + · · ·+ cn−1an−1 +WGP (an−1))

= T (a0, a1, · · · , an−1).

Hence, T = T−1WGP ◦ TL1
◦ TWGP ◦ TL2

.

Lemma 2 Let TL = TWGP−1TL1TWGP . Then TL is even.

Proof. In order to prove TL is even, we need to prove TL1
is even. TL1

(a0, a1, · · · , an−1) =

(a0, a1, · · · , an−2, an−1 +an−2). When an−2 = 0, TL1
has (2t)n−1 fixed points. When an−2 6= 0,

TL1
is the composition of 1

2 ((2t)n − (2t)n−1) transpositions

((a0, a1, · · · , an−1), (a0, a1, · · · , an−2, an−1 + an−2)).

So TL1 is even. Thus TL is even.

Let Tτ be the permutation of the n-dimensional vector space Fn2t .

Tτ (a0, a1, · · · , an−1) = (a1, a2, · · · , an−1, a0).

Where t > 1, n > 2 are positive integers. Tτ is the so-called pure circulation. In the

following, we first extend some results of the n−stage pure cycling register (PCRn) over F2 to

the general finite field of characteristic 2. And then prove that the pure circulation Tτ is an

even permutation.

Theorem 1[2]. The period of n−stage pure cycling register (PCRn) sequences over the

finite field F2 must be a factor of n. Let d be a positive factor of n. Then the number of cycles
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of length d in the state diagram of PCRn is

M(d) =
1

d

∑
d′|d

µ(d′)2d/d
′

where the sum takes over all the positive factors of d, and µ(d) is the Möbius function, then

the number of cycles in the state diagram of PCRn is

Z(n) =
1

n

∑
d|n

φ(d)2n/d

where the sum takes over all the positive factors of n, and φ(d) is Euler function. When n 6= 2,

Z(n) must be even.

Theorem 1 is on the result of n−stage pure cycling register (PCRn) sequences over the

finite field F2. For the finite field of characteristic 2, the result is similar. But not the same.

For F2, one can check that M(d) may not be even, but for finite field F2t (t > 1), we will prove

in the following theorem that M(d) is always even.

Theorem 2 The period of n−stage pure cycling register (PCRn) sequences over the finite

field F2t (t > 1) must be a factor of n. Let d be a positive factor of n. Then the number of

cycles of length d in the state diagram of PCRn is

M(d) =
1

d

∑
d′|d

µ(d′)(2t)d/d
′

where the sum takes over all positive factors of d, and µ(d) is the Möbius function. Furthermore

M(d) is even.

Proof. Let {ai}i>0 be an arbitrary sequence generated by PCRn. Then an+k = ak, k =

0, 1, 2, · · · . This proves that the period of the sequence {ai}i>0 must be a factor of n.

Let d be a positive factor of n. Let (a1, a2, · · · , an) be a state of PCRn and the period of

it be a factor of d, then (a1, a2, · · · , an) = (ad+1, ad+2, · · · , an, a1, a2, . . . , ad). So

ai = ai+d = a2d+i = · · · = a(n/d−1)d+i, i = 1, 2, · · · , d.

That is,

(a1, a2, · · · , an) = (a1, a2, · · · , ad︸ ︷︷ ︸, a1, a2, · · · , ad︸ ︷︷ ︸, · · · , a1, a2, · · · , ad︸ ︷︷ ︸).
On the contrary, if (a1, a2, · · · , ad) be an arbitrary d-tuple , then the period of the state

(a1, a2, · · · , an) = (a1, a2, · · · , ad, a1, a2, · · · , ad, · · · , a1, a2, · · · , ad) must be a factor of d. Hence

PCRn has (2t)d states whose periods are factors of d. On the other side, the number of the

states whose periods are factors of d is ∑
d′|d

d′M(d′),

where the sum takes over all positive factors of d. Thus∑
d′|d

d′M(d′) = (2t)d.
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By the Möbius inversion formula, we have

M(d) =
1

d

∑
d′|d

µ(d′)(2t)d/d
′
.

In the following we will prove that M(d) is even. When d is odd, by the above formula, we have

dM(d) =
∑
d′|d

µ(d′)(2t)d/d
′
.

So M(d) must be even. When d = 2k, k > 0,

M(2k) =
1

2k

∑
d′|2k

µ(d′)(2t)2
k/d′ =

1

2k
((2t)2

k

− (2t)2
k−1

),

so M(d) is even since k > 0, t > 1. When d = 2km, (k > 0), gcd(m, 2) = 1,

M(2km) =
1

2km

∑
d′|2km

µ(d′)(2t)2
km/d′

=
1

m

∑
d′|2km

µ(d′)2(2
kmt/d′)−k

If k = 1, then 2kmt/d′ − k = 2mt/d′ − 1 > t − 1 > 1. So 2(2
kmt/d′)−k is even. If k > 2,

let d′ = 2lm′, where m′|m, l 6 k. If l > 2, then µ(d′) = 0. If l 6 1, then 2kmt/d′ − k =

2(k− l)mt/m′− 1 > 2(k− l)t− k > 1 So 2(2
kmt/d′)−k is also even. Hence, the numerator of the

right part of above equation is always even while the denominator is odd, so M(d) is even.

Corollary 1. The permutation Tτ (a0, a1, · · · , an−1) = (a1, · · · , an−1, a0) of Fn2t is even.

Proof. By Theorem 2, the length of every cycle of the permutation is a factor of n. Let d

be a positive factor of n, then M(d) which is the number of the cycles with length d is even.

Represent Tτ as the product of disjoint cycles, then for every factor d of n, there are even

number cycles of length d. Write Tτ = Πd ∗M(d). If d is odd, then all the d-cycles are even

permutations. If d is even, then all the d-cycle are odd permutation. However, the number of

the cycles with length d is even. So the product of all d-cycle is an even permutation. Thus Tτ
is an even permutation following from that the product of two even permutations is an even

permutation.

Lemma 3. The permutation TL2
is an even permutation.

Proof. Let Tc0(a0, a1, · · · , an−1) = (a0, a1, · · · , an−2, c0an−1). And let TL3
(a0, a1, · · · , an−1) =

(a0, a1, · · · , an−2, an−1 + c1a0 + · · · + cn−1an−2). Then they are all permutations of Fn2t and

TL2
= TL3

◦ Tc0 ◦ Tτ . Since Tτ is an even permutation by corollary 1, if we prove that Tc0 and

TL3
are all even permutations, then so is TL2

.

For Tc0 , if c0 = 1, then Tc0 is the identity mapping. If c0 > 1, denote the order of c0 is r,

then Tc0 has 2t(n− 1) fixed points and 2t(n− 1)(2t− 1) r-cycle. Since 2t(n− 1)(2t− 1) is even

when n > 1 and t > 1. Tc0 is an even permutation whatever r is even or odd.

For TL3 , let h = #{i|ci 6= 0, 1 6 i 6 n − 1}. If h = 0, then TL3 is the identity mapping,

then TL3 is even. If h 6= 0. It does not lose the generality to suppose that c1 6= 0. For
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(a0, a1, · · · , an−1) ∈ Fn2t , if a0 = c−11

n−1∑
i=2

ciai−1, then (a0, a1, · · · , an−1) is the fixed point of

TL3
. So TL3

has (2t)n−1 fixed points. If a0 6= c−11

n−1∑
i=2

ciai−1, then T 2
L3

(a0, a1, · · · , an−1) =

(a0, a1, · · · , an−1). Hence TL3
is the composition of 1

2 ((2t)n−(2t)n−1) transpositions. Obviously,
1
2 ((2t)n − (2t)n−1) is even when n > 1 and t > 1. So TL3

is also an even permutation.

Applying the above lemmas, we can give our first main result.

Theorem 3 The state transition transformation T is an even permutation of Fn2t when

t, n > 1.

Proof. By Lemma 1, we have T = T−1WGP ◦ TL1
◦ TWGP ◦ TL2

. By lemma 2, TL = T−1WGP ◦
TL1
◦ TWGP is an even permutation of Fn2t . By lemma 3, TL2

is an even permutation. So T is

an even permutation of Fn2t when t, n > 1.

4 The cycle decomposition of the WG-NLFSR

In this part, we first give the relationships among the parity of a permutation of a set , the

parity of the number of cycles in the cycle decomposition of the permutation and the number

of the elements of the set. Then we apply the result to prove that the parity of the number of

cycles in the cycle decomposition of the state transition transformation T is even.

Suppose that Ω is an arbitrary nonempty set. And π is an arbitrary permutation of Ω. Let

|Ω| represent the number of elements of the set Ω, b represent the parity of the permutation

π (b = 0 or 1, 0 represents even permutation, 1 represents odd permutation), N represent the

number of cycles in the cycle decomposition of π. Then we have

Theorem 4 The parity of N is the same as the parity of |Ω|+ b.

Proof. Let the cycle structure of the permutation π be {1 ∗ k1, 2 ∗ k2, · · · ,m ∗ km}, here

1 6 m 6 |Ω|, ki(i = 1, 2, · · · ,m) are positive numbers. Then the number of the cycles in the

cycle structure is N = k1 + k2 + · · · + km. Since π is a permutation of Ω, we have k1 + 2k2 +

· · ·+ t · km = |Ω|. So the parity of |Ω| is the same as the parity of k1 + k3 + k5 + · · · .

When b = 0, i.e., π is an even permutation, then the number of k-cycle when k is even must

be even, i.e., k2 + k4 + · · · is even. So the parity of N = k1 + k2 + k3 + · · ·+ km is the same as

|Ω|.

When b = 1, i.e., π is an odd permutation, then the number of k-cycles when k is even must

be odd, i.e. k2 + k4 + · · · is odd, hence N = k1 + k2 + k3 + · · ·+ km is the same as |Ω|+ 1.

By theorem 4, we can directly have the following corollaries.

Corollary 2 For every even permutation π of Fn2t , the number of cycles in its cycle decom-

position is even.

Corollary 3 The number of cycles in the cycle decomposition of T is even.

Proof. By theorem 3, T is an even permutation, then by corollary 2, the number of cycles in

the cycle decomposition of T is even.

5 The filtering WG7-NLFSR
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The readers can refer to [6] for more details. The mathematical details of the filtering

WG7-NLFSR which is similar to the WG-7 stream cipher [5]. The filtering WG7-NLFSR is

composed of a nonlinear feedback shift register of length 23 and the WG transformation over

the finite field F27 . The finite field F27 is defined by the primitive polynomial t(x) = x7 + x+ 1

over F2.

Let h(x) = x+ x33 + x39 + x41 + x104. The nonlinear WG permutation with decimation 3,

from F27 to F27 , is defined by WGP7(x3) = h(x3 + 1) + 1, and the WG transformation over

F27 is defined as WG7(x) = Tr(WGP7(x3)) = Tr(x3 + x9 + x21 + x57 + x87), x ∈ F27 .

Here Tr(x) = x+ x2 + x4 + x8 + x16 + x32 + x64 is the mapping from F27 to F2. We denote

by {ai} the sequence generated by the following NLFSR, which is defined as

ai+23 = γai + ai+11 +WGP7(ai+22); ai ∈ F27 , (2)

where p(x) = x23 + x11 + γ is a primitive polynomial over F27 and t(γ) = 0. A binary filtering

WG-NLFSR sequence {si} is produced by filtering through the WG transformation WG7, i.e.,

si = WG7(ai), i > 0.

Set q = 27. Recall that T (a0, a1, · · · , a22) = (a1, a2, · · · , γai+ai+11+WGP7(ai+22), ai ∈ Fq.

Theorem 5 The period of the sequences which generated by WG7− NLFSR is less than

2161 − 1 (161 = (27)23). The number of cycles in the cycle structure of T is at least 4.

Proof. In order to prove the result we need to show that the length of the longest cycle in

the cycle structure of WG7−NLFSR is less than 2161 − 1. We know that {0, · · · , 0} is a fixed

point of T . Hence the period of the sequences which produced by T is less than or equal to

qn − 1. If there exists some a ∈ F∗q such that γa = WGP7(a), then T (a, · · · , a) = (a, · · · , a).

Fortunately it is easy to compute that WGP7(a) = γa, when a = γ6 + γ5 + γ2 + γ + 1. By

Theorem 3.3, 3.4., the period of the sequences which generated by WG7− NLFSR is less than

2161 − 1 and there are at least 4 cycles in the cycle structure of T .

6 Conclusions

In the paper[6], the authors presented a family of pseudorandom number generators named

the filtering WG-NLFSR and the filtering WG7-NLFSR for EPC C1 Gen2 RFID tags. They

investigated the periodicity of the filtering WG-NLFSR sequence by performing the complete

cycle decomposition of the WG-NLFSR recurrence relations and by conducting an empirical

study on the period distribution of WG-NLFSR sequences. In our paper we first investigate

the cycle decomposition of the WG-NLFSR by the theories of permutations. And our results

can be applied to a more general case. And we hope that it will be useful when we study the

nonlinear feedback shift registers.
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