152 research outputs found

    Effect of He Plasma Jet Versus Surface Plasma on the Metabolites of Acute Myeloid Leukemia Cells

    Get PDF
    Cold atmospheric plasma, including plasma jet and surface plasma, can promote the apoptosis of cancer cells without causing significant damage to surrounding normal cells, which was hopeful to be applied to the clinical cancer therapy. However, experimental plasma devices used directly to clinical experiments has challenges in technology and methods, especially the difference in killing tumor cells efficiency of these two common plasma sources. Therefore, it is great necessity to explore the differences in treating tumors between different plasma sources. This paper achieved good killing efficiency by using two kinds of cold atmospheric plasma generating devices, namely plasma jet and surface plasma treatment along acute myeloid leukemia (AML). The results showed that the He plasma jet kills leukemia cells more efficiently than surface plasma with the same voltage and frequency and the same time. By GC-TOFMS and metabolomics analysis, this paper compared the differential metabolites of leukemia cells treated by two plasma devices and the key metabolic pathways closely related to differential metabolites. Simultaneously, we found alanine, aspartate and glutamate metabolism was most correlated with a key differential metabolite, glutamine. It was found that the glutaminase activity of He plasma jet group was lower than that of surface plasma group, which might be a reason for He plasma jet group to kill tumor cells better. It was also worth noting that relative quantity of glucose metabolites of plasma jet treatment group was lower than that of surface plasma treatment group. This study provides the basis for clinical trials for future

    Bond polarizability as a probe of local crystal fields in hybrid lead-halide perovskites

    Full text link
    A rotating organic cation and a dynamically disordered soft inorganic cage are the hallmark features of hybrid organic-inorganic lead-halide perovskites. Understanding the interplay between these two subsystems is a challenging problem but it is this coupling that is widely conjectured to be responsible for the unique behaviour of photo-carriers in these materials. In this work, we use the fact that the polarizability of the organic cation strongly depends on the ambient electrostatic environment to put the molecule forward as a sensitive probe of local crystal fields inside the lattice cell. We measure the average polarizability of the C/N--H bond stretching mode by means of infrared spectroscopy, which allows us to deduce the character of the motion of the cation molecule, find the magnitude of the local crystal field and place an estimate on the strength of the hydrogen bond between the hydrogen and halide atoms. Our results pave the way for understanding electric fields in lead-halide perovskites using infrared bond spectroscopy

    Intracellular ROS Mediates Gas Plasma-Facilitated Cellular Transfection in 2D and 3D Cultures

    Get PDF
    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models

    Alteration of Metabolite Profiling by Cold Atmospheric Plasma Treatment in Human Myeloma Cells

    Get PDF
    BACKGROUND: Despite new progress of chemotherapy in multiple myeloma (MM) clinical treatment, MM is still a refractory disease and new technology is needed to improve the outcomes and prolong the survival. Cold atmospheric plasma is a rapidly developed technology in recent years, which has been widely applied in biomedicine. Although plasma could efficiently inactivate various tumor cells, the effects of plasma on tumor cell metabolism have not been studied yet. METHODS: In this study, we investigated the metabolite profiling of He plasma treatment on myeloma tumor cells by gas-chromatography time-of-flight (GC-TOF) mass-spectrometry. Meanwhile, by bioinformatic analysis such as GO and KEGG analysis we try to figure out the metabolism pathway that was significantly affected by gas plasma treatment. RESULTS: By GC-TOF mass-spectrometry, 573 signals were detected and evaluated using PCA and OPLS-DA. By KEGG analysis we listed all the differential metabolites and further classified into different metabolic pathways. The results showed that beta-alanine metabolism pathway was the most significant change after He gas plasma treatment in myeloma cells. Besides, propanoate metabolism and linoleic acid metabolism should also be concerned during gas plasma treatment of cancer cells. CONCLUSIONS: Cold atmospheric plasma treatment could significantly alter the metabolite profiling of myeloma tumor cells, among which, the beta-alanine metabolism pathway is the most susceptible to He gas plasma treatment. © The Author(s) 2018

    Alteration of Metabolite Profiling by Cold Atmospheric Plasma Treatment in Human Myeloma Cells

    Get PDF
    BACKGROUND: Despite new progress of chemotherapy in multiple myeloma (MM) clinical treatment, MM is still a refractory disease and new technology is needed to improve the outcomes and prolong the survival. Cold atmospheric plasma is a rapidly developed technology in recent years, which has been widely applied in biomedicine. Although plasma could efficiently inactivate various tumor cells, the effects of plasma on tumor cell metabolism have not been studied yet. METHODS: In this study, we investigated the metabolite profiling of He plasma treatment on myeloma tumor cells by gas-chromatography time-of-flight (GC-TOF) mass-spectrometry. Meanwhile, by bioinformatic analysis such as GO and KEGG analysis we try to figure out the metabolism pathway that was significantly affected by gas plasma treatment. RESULTS: By GC-TOF mass-spectrometry, 573 signals were detected and evaluated using PCA and OPLS-DA. By KEGG analysis we listed all the differential metabolites and further classified into different metabolic pathways. The results showed that beta-alanine metabolism pathway was the most significant change after He gas plasma treatment in myeloma cells. Besides, propanoate metabolism and linoleic acid metabolism should also be concerned during gas plasma treatment of cancer cells. CONCLUSIONS: Cold atmospheric plasma treatment could significantly alter the metabolite profiling of myeloma tumor cells, among which, the beta-alanine metabolism pathway is the most susceptible to He gas plasma treatment. © The Author(s) 2018

    NO2- and NO3- Enhance Cold Atmospheric Plasma Induced Cancer Cell Death by Generation of ONOO-

    Get PDF
    Cold atmospheric plasma (CAP) is a rapidly developed technology that has been widely applied in biomedicine especially in cancer treatment. Due to the generation of various active species in plasma, CAP could induce various tumor cells death and showed a promising potential in cancer therapy. To enhance the biological effects of gas plasma, changing the discharging parameters is the most commonly used method, yet increasing discharging power will lead to a higher possibility of simultaneously damage surrounding tissues. In this study, by adding nontoxic concentration of additional nitrite and nitrate in the medium, we found that anti-tumor effect of CAP treatment was enhanced in the same discharging parameters. By microplate reader and cell flow cytometer we measured several extracellular and intracellular RONS and found that ONOO- was mostly correlated with the enhanced cancer cell killing effect. We proposed that more nitrogen supplies such as nitrite and nitrate could increase the production of RNS especially ONOO- and resulted in a better killing effect to cancer cells. Our results provided a new strategy to enhance the antitumor effect by plasma jet treatment without changing the discharging parameters. © 2018 Author(s)

    Effect of Cold Atmospheric Plasma Treatment on the Metabolites of Human Leukemia Cells

    Get PDF
    Background Acute myeloid leukemia (AML) is a typically fatal malignancy and new drug and treatment need to be developed for a better survival outcome. Cold atmospheric plasma (CAP) is a novel technology, which has been widely applied in biomedicine, especially in various of cancer treatment. However, the changes in cell metabolism after CAP treatment of leukemia cells have been rarely studied. Methods In this study, we investigated the metabolite profiling of plasma treatment on leukemia cells based on Gas Chromatography Tandem Time-of-Flight Mass Spectrometry (GC-TOFMS). Simultaneously, we conducted a series of bioinformatics analysis of metabolites and metabolic pathways with significant differences after basic data analysis. Results 800 signals were detected by GC-TOF mass-spectrometry and then evaluated using PCA and OPLS-DA. All the differential metabolites were listed and the related metabolic pathways were analyzed by KEGG pathway. The results showed that alanine, aspartate and glutamate metabolism had a significant change after plasma treatment. Meanwhile, d-glutamine and d-glutamate metabolism were significantly changed by CAP. Glutaminase activity was decreased after plasma treatment, which might lead to glutamine accumulation and leukemia cells death. Conclusions We found the above two metabolic pathways vulnerable to plasma treatment, which might result in leukemia cells death and might be the cornerstone of further exploration of plasma treatment targets

    Isolation of two distinct prion strains from a scrapie-affected sheep

    Get PDF
    We performed a transmission study using mice to clarify the characteristics of the most recent case of scrapie in Japan. The mice that were inoculated with the brain homogenate from a scrapie-affected sheep developed progressive neurological disease, and one of the scrapie-affected mice showed unique clinical signs during primary transmission. This mouse developed obesity, polydipsia, and polyuria. In contrast, the other affected mice exhibited weight loss and hypokinesia. In subsequent passages, the mice showed distinct characteristic scrapie phenotypes. This finding may prove that different prion strains coexist in a naturally affected sheep with scrapie

    Laser-cutting: A Novel Alternative Approach for Point-of-Care Manufacturing of Bespoke Tablets.

    Get PDF
    A novel subtractive manufacturing method to produce bespoke tablets with immediate and extended drug release is presented. This is the first report on applying fusion laser cutting to produce bespoke furosemide solid dosage forms based on pharmaceutical-grade polymeric carriers. Cylindric tablets of different sizes were produced by controlling the two-dimensional design of circles of the corresponding diameter. Immediate and extended drug release patterns were achieved by modifying the composition of the polymeric matrix. Thermal analysis and XRD indicated that furosemide was present in an amorphous form. The laser-cut tablets demonstrated no significant drug degradation (<2%) nor the formation of impurities were identified. Multi-linear regression was used to quantify the influences of laser-cutting process parameters (laser energy levels, scan speeds, and the number of laser applications) on the depth of the laser cut. The utility of this approach was exemplified by manufacturing tablets of accurate doses of furosemide. Unlike additive or formative manufacturing, the reported approach of subtractive manufacturing avoids the modification of the structure, e.g., the physical form of the drug or matrix density of the tablet during the production process. Hence, fusion laser cutting is less likely to modify critical quality attributes such as release patterns or drug contents. In a point-of-care manufacturing scenario, laser cutting offers a significant advantage of simplifying quality control and a real-time release of laser-cut products such as solid dosage forms and implants
    • …
    corecore