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Effect of He Plasma Jet Versus
Surface Plasma on the Metabolites of
Acute Myeloid Leukemia Cells
Dehui Xu1*†, Ning Ning2†, Yujing Xu1, Wenjie Xia1, Dingxin Liu1, Hailan Chen3

and Michael G. Kong1,3,4*

1 State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong
University, Xi’an, China, 2 The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China, 3 Frank Reidy
Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States, 4 Department of Electrical and Computer
Engineering, Old Dominion University, Norfolk, VA, United States

Cold atmospheric plasma, including plasma jet and surface plasma, can promote the
apoptosis of cancer cells without causing significant damage to surrounding normal cells,
which was hopeful to be applied to the clinical cancer therapy. However, experimental
plasma devices used directly to clinical experiments has challenges in technology and
methods, especially the difference in killing tumor cells efficiency of these two common
plasma sources. Therefore, it is great necessity to explore the differences in treating tumors
between different plasma sources. This paper achieved good killing efficiency by using two
kinds of cold atmospheric plasma generating devices, namely plasma jet and surface
plasma treatment along acute myeloid leukemia (AML). The results showed that the He
plasma jet kills leukemia cells more efficiently than surface plasma with the same voltage and
frequency and the same time. By GC-TOFMS and metabolomics analysis, this paper
compared the differential metabolites of leukemia cells treated by two plasma devices and
the key metabolic pathways closely related to differential metabolites. Simultaneously, we
found alanine, aspartate and glutamate metabolism was most correlated with a key
differential metabolite, glutamine. It was found that the glutaminase activity of He plasma
jet group was lower than that of surface plasma group, which might be a reason for He
plasma jet group to kill tumor cells better. It was also worth noting that relative quantity of
glucose metabolites of plasma jet treatment group was lower than that of surface plasma
treatment group. This study provides the basis for clinical trials for future.

Keywords: cold atmospheric plasma, acute myeloid leukemia, He plasma jet, surface plasma, glutamine,
glutaminase, alanine, aspartate and glutamate metabolism

INTRODUCTION

Cold atmospheric plasma (CAP) is a groundbreaking technique that overcomes the limits of
thermal plasma and reduces the gas temperature to room temperature so that the cold plasma can
be used directly to handle biological tissue (1–3). Thus, the application of cold plasma in the medical
and biological fields has been developed rapidly in recent years. The most commonly used
applications include sterilization, wound healing, dermopathic treatment, and cancer treatment
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(4–12). It has been reported that CAP cam efficiently kill various
types of tumor cells, including lung cancer, leukemia, intestinal
cancer, melanoma, cervical cancer, glioma, and pancreatic cancer
(13–20). There is no doubt that plasma medicine has obtained
great research results and many new discoveries in the field of
cancer treatment, and it is hopeful that the research results of
laboratory plasma in vitro and in vivo treatments will eventually
be used in clinical therapy of cancer (21–23). However, the direct
application of plasma has double challenges in technology and
method, especially the difference in the killing effect of different
types of plasma sources on tumor cells. The same power supply
parameters may achieve different therapeutic effects. Therefore,
it is of great significance to explore the differences in the effects of
different plasma sources on tumor treatment. Cold atmospheric
plasma could generate aqueous reactive species including OH,
H2O2, O3, nitrite (HNO2=NO

−
2 ) and nitrate (HNO3=NO

−
3 ) in

liquid phase, which biochemically react with macromolecular
substances in the cell (such as proteins, lipids, carbohydrates,
amino acids, etc.) to change cell signaling pathways, modify
genes expression, affect the response of the immune system,
disrupts the cell cycle, and even induces apoptosis (24–26). Our
previous study investigated the cause of leukemia cells apoptosis
induced by plasma with metabonomics level, and it was inferred
that plasma leads to a reduction in glutaminase activity in
leukemia cells, thereby inhibiting glutamine metabolism.
Glutamine metabolism provides a large amount of nutrients for
tumor cells growth and proliferation, so after plasma treatment,
glutamine metabolism was inhibited to eventually lead to
leukemia cells apoptosis (27). In this paper, we found that when
plasma jet and surface plasma were used to treat leukemia cells
under the same voltage and frequency, the cell mortality of plasma
jet treatment group was always higher than that of surface plasma
treatment group. The qualitative and quantitative metabolites of
plasma jet treatment group and surface plasma treatment group
were studied by Gas Chromatography Tandem Time-of-Flight
Mass Spectrometry (GC-TOFMS). At the same time, by the
bioinformatics analysis of metabolites and metabolic pathways,
the metabolites and metabolic pathways related with differential
metabolites were screened out, and the reasons for the different

effect in leukemia cells apoptosis between the two plasma
generating devices were analyzed at the metabolism level.

METHOD

Surface Plasma Generation
In this study, a surface plasma device was used to produce non-
thermal plasma which has a similar configuration as reported
previously (28). As shown in Figure 1, the plasma device
consisted of a high voltage electrode, a ground electrode made
of stainless-steel mesh and a 1mm Polytetrafluoroethylene
(PEFT) plate sandwiched between the two electrodes. And we
can see the surface plasma uniformly covers the surface of PEFT
dielectric plate from Figure 1.

Plasma Jet Generation
The structure of the plasma jet device and the photograph of
plasma plume were shown in Figure 2. The high voltage
electrode was made of a stainless-steel rod, which was sealed in
a small quartz tube with a thickness of 0.75 mm. The stainless-
steel rod and the quartz capillary are placed in the axis of an
outer quartz tube, which has an inner and an outer diameter of
4 mm and 6 mm, respectively. The helium flowed through the
device with a rate of 2 SLM, and there was a grounded electrode
right below the stainless-steel rod wrapping around the outer
quartz tube.

Optical Emission Spectroscopy
We used a UV/visible spectrometer (Maya pro 2000, Ocean
Optics, China) in the wavelength range of 200–800 nm to
measure the emission spectrum of surface plasma and plasma
jet. The optical probe was mounted directly at the discharge area
of 2 cm when detecting the spectrum of surface plasma
discharging. And when we detected the spectrum of plasma jet
discharging, the optical probe was face-to-face with the end of
plasma plume with a distance of 2 cm.

FIGURE 1 | Schematic diagram and discharge photograph of surface plasma.
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Cell Culture Condition
The study used leukemia cell line, MOLM13. MOLM13 cells
were grown in Roswell Park Memorial Institute (RPMI) 1640
medium supplemented with 10% fetal calf serum, 100 U/ml
penicillin, and 50 mg/ml streptomycin (Gibco-Invitrogen,
Carlsbad, CA, 15140-122).

Cell Viability Assessment
Cell-Titer-Glo luminescent cell viability assay kit was adopted to
measure cell viability, and it based on ATP participating in
various enzymatic reactions in the organism maintaining normal
life activities, therefore ATP is an indicator of metabolism of
living cells and the production of ATP can directly reflect the
number and state of cells. The stable glow signal generated by
UltraGlow luciferase in the kit has a half-life of more than 5 h.
Luciferase requires the participation of ATP during the light-
emitting process. The light signal is proportional to the amount
of ATP in the system, and ATP is directly related to the number
of living cells. In this paper, 100 ml of cell sample and 100 ml of
CellTiter-Glo reagent were added to an opaque 96-well plate, and
the mixture was incubated at room temperature in the dark for
10 min to stabilize the fluorescence signal value, and then the
opaque 96-well plate was placed into the enzyme-labeled
instrument to measure its fluorescence value.

Solvents and Reagents
RPMI 1640 medium was used to culture MOLM13 cells with
10% of fetal bovine serum (FBS). CellTIter – Glo luminescent cell
viability assay kit was bought from Promega, USA. In addition,
we purchased BSTFA (including 1% TMC, v/v) and methanol
(HPLC grade) from Regis Technologies Inc and Anpel
Laboratory Technologies Inc (Shanghai, China). Ultra-pure
water we used was from ultra-pure water purifier.

Sample Collection
We used a 24-well plate to seed 3 × 105 cells/well in 300 ml of
RPMI 1640 medium. Wells were treated with He plasma at 40 s
as the plasma treated group, and the rest wells were treated with
surface plasma at 40 s, containing 5 replicates/samples in each
group. After incubation for 24 h, cells were collected and counted
to ensure that the number of cells was about 1 × 107 cells/sample.
Cells were centrifuged at 4°C for 5 min at the speed of 1200 rpm
and washed 3 times with PBS at the speed of 900 rpm. Then the
cell mass in EP tube was placed in liquid nitrogen for 5 min
rapidly and stored in the −80°C refrigerator until it was analyzed.

Metabolite Extraction
Samples were transferred into the 2-ml EP tubes, and extracted
with 1,000-ml extraction liquid (VMethanol: VChloroform = 3:1),
vortex mixing for 30 s. The mixture was homogenized in ball mill
for 4 min at 45 Hz, and then ultrasound treated for 5 min
(incubated in ice water) repeating 3 times. After Centrifuging for
15 min at 12000 rpm, 4°C, we transferred the supernatant (800
ml) into a fresh 2-ml GC/MS glass vial, and took 40 ml from each
sample and pooled them as QC sample. The extration was dried
completely in a vacuum concentrator without heating, and then
we added 30-ml Methoxy amination hydrochloride (20 mg/ml in
pyridine) to the dried extration incubating for 30 min at 80°C.
Last we added 40 ml of the BSTFA regent (1% TMCS, v/v) to the
sample aliquots incubating for 1.5 h at 70°C. All samples were
analyzed by gas chromatograph system coupled with a Pegasus
HT time-of-flight mass spectrometer (GC-TOF-MS).

Software of Statistical Analysis
SPSS 20.0 software was used to perform statistical analysis on cell
viability and enzyme activity assessment. SIMCA software was
used to perform principal component analysis (PCA) and
orthogonal projections to latent structures – discriminant
analysis (OPLS-DA). R language was used to visualize some
results of data analysis.

RESULTS

Plasma Discharging Parameter and
Characters
A simusoidal voltage was applied to the high-voltage electrode
with a constant frequency of 10 kHz and the applied voltage was
set at a peak-to-peak value of 8 kV to generate a surface plasma
in ambient air, as shown in Figure 3A. The discharge voltage and
frequency of the plasma jet was kept at 8 kV and 10 kHz and the
corresponding applied voltage and current during He plasma
discharge were shown in Figure 3B. To analyze the radiative
species produced by different plasma, optical emission
spectrometry (OES) diagnostics was conducted. The optical
emission spectra of plasma jet and surface plasma are shown
in Figures 3C, D respectively. The emission spectra in the
plasma jet consists of •OH transition (A2S+ ! X2Pr) at 308
and 618 nm; He I transitions at 501.6, 587.7, 668, 706.7 and 728.2
nm; Ha transition at 656.5 nm; O I transitions at 777.6 nm;

FIGURE 2 | Schematic diagram and discharge photograph of plasma jet.
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spectral band of the N2 transitions (C3Pu!B3Pg) from 316 to
350 nm, and spectral band of the N+

2 transitions (B2S+
u ! X2S+

g )
from 391.4 to 470 nm due to the Penning ionization. Different
from plasma jet whose optical emission spectra are dominated by
nitrogen and helium lines, the optical emission spectra of surface
plasma are dominated by many nitrogen lines including N2

transitions (C3Pu!B3Pg) in the range of 300–450 nm and N
transitions from 632 to 761 nm.

Multivariate Statistical Analysis: Principal
Component Analysis and Orthogonal
Projections to Latent Structures—
Discriminant Analysis
After pretreatment of qualified and quantified metabolites by Gas
Chromatography Tandem Time-of-FlightMass Spectrometry, GC-
TOF-MS, we obtained data about quantity of all metabolites. We
carried out a series of multivariate variable pattern recognition
analysis, which were the principal component analysis (PCA) and
the orthogonal least squares–discriminant analysis (orthogonal
projection to latent structures-discriminant analysis, OPLS-DA).
PCA result is shown in Figure 4A. Due to the influence of related
variables, the difference variables were spread over more principal
components, making it impossible to perform better visualization
and subsequent analysis. Therefore, further analysis of the results
was obtained by OPLS-DA, as shown in Figure 4B. From the result
of OPLS-DA, it can be seen that two groups are significantly
different, and all samples are in 95% confidence interval. The result
of OPLS-DA replacement test showed that the original model had

good robustness and no over-fitting phenomenon, as shown in
Figure 4C.

Cell Viability of Plasma Surface Plasma
Versus Jet Group
We totally investigated 10 samples of MOLM13 leukemia cell line,
of which five samples as the experimental group were treated byHe
plasma jet for 40 s and the otherfive sampleswere treated by surface
plasma. By cell viability assessment, our study found that when
leukemia cells were treated by He plasma jet and surface plasma,
respectively for the same time, cell viability in both groups gradually
decreased with increasing treatment time and the cell death rate of
jet treatment was much greater than that of surface treatment, as
shown in Figure 5.

Differential Metabolites
Weuseda standardgenerallyacceptedby the academiccommunity,
that is, the p-value of the student’s t-test is less than 0.05, and the
importance of the projection variable (VIP) of the first principal
component of the OPLS-DA model is greater than 1. The
differential metabolites between the jet group and the surface
group were determined and further illustrated in a volcano plot
(Figure 6). As shown in the final screening results, up-regulated
metabolites were shown in red, while down-regulated metabolites
were shown in blue. Glutaminewasmarked out as a key differential
metabolite in the volcano map. It can be seen that relative quantity
of glutamine in plasma surface treatment group compared with
plasma jet treatment group is down-regulated.

A B

DC

FIGURE 3 | Discharge parameters of (A) surface plasma and (B) plasma jet; Emission spectra of (C) surface plasma and (D) plasma jet.
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Cluster Analysis of Differential Metabolites
We have screened all the up-regulated and down-regulated
differential metabolites above. And the hierarchical clustering
analysis will clear classify the metabolites with the same and
different characteristics between the experimental groups. The
results were visualized in a heatmap, as shown in Figure 7A. We
clustered carbohydrates, amino acids respectively in different
metabolites, as shown in Figures 7B, C. Figure 7B showed that
carbohydrates were more up-regulated in surface plasma
treatment, which might be one reason for the higher apoptosis
rate of leukemia cells in plasma jet group. Glycolysis is the main
metabolic pathway for the growth and rapid proliferation of

tumor cells; therefore the decrease in the carbohydrate
metabolites is not conducive to the growth and rapidly
proliferation of tumor cells and may even cause tumor cells
death. Figure 7C showed that the relative quantity of glutamine
in plasma jet treatment group was higher than that in surface
plasma treatment group, which was consistent with the result
obtained when screening differential metabolites.

Screening Metabolic Pathway Related
With Differential Metabolites by KEGG
All pathways involved in differential metabolites have been found
through KEGG annotation analysis. But to understand whether
these pathways are closely related to experimental conditions,
further metabolic pathway analysis of differential metabolites is
required. Through a comprehensive analysis of the pathways of
differential metabolites, including enrichment analysis and
topological analysis, we further screened the pathways to find
out the twenty-nine key pathways that were most relevant to
metabolite differences, the first three lines of which were shown in
Table 1 and which were shown as a bubble plot in Figure 8. The
Table 1 showed that L-glutamine was the common differential
metabolite in the top three metabolic pathways enriched in
differential metabolites, and it might be the most critical
differential metabolite in this paper. The results showed that the
alanine, aspartate and glutamate metabolism pathway was the
highest correlation with differential metabolites. Glutamine is
catalyzed by glutaminase (GLS) to glutamate as a key part of the
alanine, aspartate and glutamate metabolism pathway.

A B

C

FIGURE 4 | Score scatter plot of (A) PCA model and (B) OPLS-DA model; (C) permutation test of OPLS-DA model.

FIGURE 5 | Cell viability of plasma surface group versus plasma jet group,
*P < 0.05.

Xu et al. Leukemia Metabolism After Plasmas Treatment

Frontiers in Oncology | www.frontiersin.org March 2021 | Volume 11 | Article 5524805

120 

- 100 
C 80 
~ 
:.c 60 
l'O 

> 40 
Qi 
0 20 

0 
~ 

■ 

■ 

• ' -~- • 
■ -• ■ ■ I . 

■ • 

Inte rcepts : R2Y (cum) = (0 , 0 .98), Q 2(cum) = (0 , -0.14) 

- - - - --- - - .... - - - - ... - - - - .... - - - - • 

I 
■ 
■ 

I 
I 
------ ■ --- ■ 

* * 

* * * 
* * 

'I,~ t,.~ ~., 
Co 

r:,,., 
.._-,; 

Treatment time(s) 

■ ■ 

I I 

I ------ t --
------r-- ■ 

-- - I 

mm 
m 

jet 

i i 
■ ■ 

0.,0 

Correlation Coefficient 

surface 

--1---- ----
-- -- ■ --

■ 
■ 

I 

= 
■ 

• Fl 2 Y (cum) 

■ 02(cum) 

·-■ -

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Glutaminase and Glutamine Metabolism
Our previous studies have shown that glutaminase activity in
leukemia cells was inhibited after plasma treatment. Therefore,
glutamine metabolism was inhibited to lead to glutamine
accumulation, which was a very important metabolism for
tumor cells growth and rapidly proliferation. Its inhibition

leads to leukemia cells apoptosis. This paper studied the reason
for the difference in the effect of surface plasma and plasma jet on
killing leukemia cells from metabonomics level. The result of
differential metabolite analysis showed that the relative quantity
of glutamine in plasma jet group was higher than that in surface
plasma group, and through screening metabolic pathways with

FIGURE 6 | Volcano plot of differential metabolite screening.

A B

C

FIGURE 7 | Cluster analysis of (A) all differential metabolites, (B) carbohydrate metabolites, and (C) amino acid metabolites.
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high correlation with differential metabolites, the key
metabolic pathways were enriched, showing that glutamine
was still the key metabolite for this experiment. Based on our
previous conclusions and above research results, this paper
hypothesized that the glutaminase activity of plasma jet group
was lower than that of surface plasma group, so glutamine
metabolism of plasma jet group was inhibited more than that
of surface plasma group and then more glutamine was
accumulated in plasma jet group and eventually plasma jet
caused more leukemia cells apoptosis. In order to verify this
hypothesis, the glutaminase activity kit was used to detect the
glutaminase activity of leukemia cells after treatment with two
different plasma sources, and the experimental result was shown
in Figure 9. The glutaminase activity gradually decreases with
the increase of plasma treatment time, and the glutaminase
activity of plasma jet group was always lower than that of
surface plasma group. Our previous studies also demonstrated

TABLE 1 | Metabolic pathway analysis (Top 3).

Metabolic pathway P-value Impact Enriched differential metabolites

Aminoacyl-tRNA biosynthesis 0.0004 0.06 L-Glutamine; L-Aspartic acid; L-Cysteine; L-Isoleucine; L-Proline
Arginine and proline metabolism 0.0005 0.13 L-Glutamine; L-Aspartic acid; L-Proline; Spermidine; Pyrrole-2-carboxylic acid
Alanine, aspartate and glutamate metabolism 0.0194 0.47 L-Glutamine; L-Aspartic acid

FIGURE 8 | Bubble plot of metabolic pathway related with differential metabolites.

FIGURE 9 | Relative glutaminase activity of He plasma jet treatment group
and surface plasma treatment group, *P < 0.05.
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that leukemia cells viability could decrease when glutaminase
activity was inhibited. The above conclusion proves that the
hypothesis holds, and it is proved that the plasma jet compared
with surface plasma kills leukemia cells more efficiently with the
same power supply voltage and frequency.

DISCUSSION

In recent years, plasma medicine has achieved success in many
fields of application, such as bacterial killing, blood coagulation,
and skin disease treatment (29–38). Research on plasma killing
of cancer cells has achieved certain results. The study found that
cold atmospheric plasma has a significant advantage in the
treatment of tumors, that is, appropriate plasma treatment can
induce tumor cell apoptosis without causing obvious damage to
surrounding normal tissues, which is not available in most
existing cancer treatment methods (39–41). There are many
plasma devices for treatment of tumor cells currently, and the
two most important devices are plasma jet and surface plasma,
both of which are based on dielectric barrier discharge, but the
shape and action rage of their generated plasma are different.
Surface plasma source generates uniform and stable plasma on
the surface of the dielectric plate, and the action range is
determined by the area of the dielectric plate, while the plasma
jet source generates plasma in the discharge area and plasma is
ejected from the nozzle below the discharge area. The ejected
plasma of plasma jet is elongated and has no fixed boundary, and
the action range is small. Studies have found that these two
plasma sources could effectively lead to tumor cells apoptosis and
were expected to be used in clinical cancer treatment, but the
effects of different plasma sources on tumor cells must be
different. The application of plasma to in vivo treatment
requires precision calculating the dose of plasma generated, so
it is particularly important to study the difference on tumor
killing effect under the same voltage and frequency of different
plasma discharging devices. In this paper, the above two most
common plasma sources were selected for research. First, the
leukemia cells, MOLM13 were treated with surface plasma and
plasma jet respectively, and the result showed that the mortality
of leukemia cells was high increasingly with plasma treatment
time increasing, and the mortality of plasma jet treatment group
was always higher than that of surface plasma. In order to
explore the reason why the efficiency of killing leukemia cells
of plasma jet was higher than surface plasma, the qualitative and
quantitative analysis of metabolites was performed on leukemia
cells by the two plasma sources and the differential metabolites
was screened out, and the relative quantity of differential
metabolites was calculated. Then the enrichment analysis of
metabolic pathways of differential metabolites was carries out,
and it was found that the three metabolic pathways with high
correlation with differential metabolites all have a common
differential metabolite, glutamine. The above results indicated
that glutamine was the most important differential metabolite in
the experiment and the relative quantity of glutamine in plasma
jet treatment group was higher than that in surface plasma

treatment group. The glutaminase activity gradually decreased
with the increase of plasma treatment time, and the glutaminase
activity of plasma jet treatment group was significantly lower
than that of surface plasma group. Studies have shown that
tumor cells have a large metabolism dependence, which is an
important difference between tumor cells and other normal cells,
and one of the characteristics of this metabolic dependence is to
increase the utilization rate of glutamine in anabolic pathway
(42). Glutamine provides an intermediate metabolite that is
lacking due to enhanced anabolism of tumor cells in TCA
circle, and plays a role in maintaining the redox homeostasis
of tumor cells (41–43). Therefore, glutamine metabolism is
considered to be another important metabolic characteristic
except for Warburg effect of tumor cells. If we clear the
glutamine in tumor cells or inhibit the enzymes in the
glutamine metabolism pathway, it will lead to an increase in
reactive oxygen species in tumor cells, leading to tumor cells
apoptosis (29, 43). The previous conclusions and the paper
conclusions could explain that glutamine metabolism of
plasma jet treatment group was more inhibited than that of
surface plasma group, so tumor cells mortality of plasma jet
group was higher than that of surface plasma group. It is
also worth noting that through hierarchical clustering analysis
on differential metabolites of carbohydrates and amino acids
respectively, it was found that the relative quantity of metabolites
in carbohydrate metabolism in plasma jet group was lower than
that of surface plasma group. And this also proved that plasma
jet group was not able to produce enough metabolites for energy
synthesis due to its low level of glucose metabolism. Although
this study was not comprehensive and has many limitations, it is
the first attempt to explain the difference in the killing tumor
cells effect of two different plasma sources from metabonomics
level, which provides the experimental basis for the final
application of these two major plasma sources in clinical
cancer treatment.

CONCLUSION

Plasma jet and surface plasma are two common plasma
generating devices, which have excellent effects in killing tumor
cells. The paper mainly analyzed the differences in the treatment
effects of cancer between the two devices. The results again
demonstrated that inhibition of glutamine metabolism was a
metabolic abnormality produced by plasma treatment, which
was a vital cause of tumor cell death. Abnormal glutamine
metabolism was due to inhibition of glutaminase activity.
Glutaminase activity of the He plasma jet group was lower
than that of the surface plasma group, which determined that
the treatment effect of the jet group was greater than that of the
surface group. This study compared the ability of two major
plasma generating devices to treat tumors, and analyzed the
causes of the differences in the therapeutic effects of the two
devices at the metabolic level, which provided a theoretical basis
for others experiments to set reasonable parameters.
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